Crack opening profile in DCDC specimen

Informations Contextuelles

The opening profile of the cracks produced in the Double Cleavage Drilled Compression (DCDC) specimens for brittle materials is investigated. The study is achieved by combining Finite element simulations of a DCDC linear elastic medium with experimental measurements by crack opening interferometry on pure silica glass samples. We show that the shape of the crack can be described by a simple expression as a function of the geometrical parameters of the sample and the external loading conditions. This result can be used to measure accurately in real time relevant quantities during DCDC experiments, such as the crack length or the stress intensity factor applied to the specimen.

Pallares G., Ponson L., Grimaldi A., George M., Prevot G. and Ciccotti M., 2009. Crack opening profile in DCDC specimen. Int. J. Fracture. 156, 11–20.

DOI : 10.1007/s10704-009-9341-8


Haut de page



À lire aussi...

Stick-slip in the peeling of an adhesive tape : evolution of theoretical model

Ciccotti M., Giorgini B., Barquins M., 1998. Stick-slip in the peeling of an adhesive tape : evolution of theoretical model. Int. J. Adhesion and (...) 

> Lire la suite...

Nonlinear viscoelastic modeling of adhesive failure for polyacrylate pressure-sensitive adhesives. Macromolecules. 2018

Chopin J., Villey R., Yarusso D., Barthel E., Creton C. and Ciccotti M., 2018. Nonlinear viscoelastic modeling of adhesive failure for (...) 

> Lire la suite...