Real-time observation of non-equilibrium liquid condensate confined at tensile crack tips in oxide glasses

Informations Contextuelles

As crack propagation in oxide materials at low crack velocities is partly determined by chemical corrosion, proper knowledge of the crack tip chemistry is crucial for understanding fracture in these materials. Such knowledge can be obtained only from in situ studies because the processes that occur in the highly confined environment of the crack tip are very different from those that take place at free surfaces, or that can be traced post mortem. We report on the occurrence of a hydrous liquid condensate between the two fracture surfaces in the vicinity of the tip of tensile cracks in silica. Observations are performed in real time by means of atomic force microscopy (AFM) at continuously controlled crack velocities in the regime of stress corrosion. Condensate formation and changes in the extent and the shape are demonstrated for a wide range of macroscopic humidities at different crack speeds. Its liquid character is confirmed by the study of AFM phase-contrast data. It is believed that this evidence of a nanoscale liquid hydrous phase at the crack tip will provide novel insights into the chemistry of failure of oxide materials.

Wondraczek L., Ciccotti M., Dittmar A., Oelgardt C., Célarié F. and Marlière C., 2006. Real-time observation of non-equilibrium liquid condensate confined at tensile crack tips in oxide glasses. J. Am. Cer. Soc.. 89[2], pp. 746-749.

cond-mat/0509209


Haut de page



À lire aussi...

Griffith Cracks at the Nanoscale, Int. J. Appl. Glass Science, 2013.

SM Wiederhorn, T Fett, JP Guin and M. Ciccotti, 2013. Griffith Cracks at the Nanoscale, Int. J. Appl. Glass Science, 4[2] (...) 

> Lire la suite...

Mechanics of zero degree peel test on a tape - effects of large deformation, material nonlinearity, and finite bond length. Extreme Mechanics Letter. 2019

Liu Z., Minsky H., Creton C, Ciccotti M. and Hui C.Y., 2019. Mechanics of zero degree peel test on a tape— effects of large deformation, material (...) 

> Lire la suite...