Nonlinear viscoelastic modeling of adhesive failure for polyacrylate pressure-sensitive adhesives. Macromolecules. 2018

Chopin J., Villey R., Yarusso D., Barthel E., Creton C. and Ciccotti M., 2018.
Nonlinear viscoelastic modeling of adhesive failure for polyacrylate pressure-sensitive adhesives. Macromolecules. 51 : 8605−8610.

We investigate experimentally the adherence energy Γ of model polyacrylate pressure-sensitive adhesives (PSAs) with combined large strain rheological measurements in uniaxial extension and an instrumented peel test. We develop a nonlinear model for such a peel test which captures the dependence of Γ(V) with peeling rate V, revealing the key role played by the extensional rheology. Our model explains in particular why traditional linear viscoelastic approaches correctly predict the slope of Γ(V) curves for sufficiently elastic PSAs characterized by a simple rate-independent debonding criterion. However, for more viscoelastic adhesives, we identified a more complex rate-dependent debonding criterion yielding a significant modification of the Γ(V) curves, an effect that has been largely overlooked so far. This investigation opens the way toward the understanding of fibrils debonding, which is the main missing block to predict the adherence of PSAs.

Haut de page



À lire aussi...

Fracture and adhesion of soft materials : a review, Reports on Progress in Physics, 2016.

C Creton and M Ciccotti, 2016. Fracture and adhesion of soft materials : a review, Rep. Prog.Phys., 79, Art N. 046601. 

> Lire la suite...

Stress-corrosion mechanisms in silicate glasses (Invited review article)

M. Ciccotti, 2009. Stress-corrosion mechanisms in silicate glasses (Invited review article). J. Phys. D : Appl. Phys. 42 Art (...) 

> Lire la suite...