The crack tip : a nanolab for studying confined liquids

Informations Contextuelles

We study the equilibrium properties of a liquid phase condensed at the nanoscale between the surfaces of a sharp crack in fused silica in a moist controlled atmosphere. The extension of the condensed phase along the fracture is measured by in situ atomic force microscopy phase imaging and it is shown to be determined by a critical distance between the opposite crack surfaces, which is an increasing function of humidity. The present technique is very promising for measuring the properties of confined liquids at the nanoscale as well as for modeling the physics and chemistry of slow crack propagation in glasses.

Grimaldi A., George M., Pallares G., Marlière C. and Ciccotti M., 2008. The crack tip : a nanolab for studying confined liquids. Physical Review Letters. 100, Art N. 165505.

DOI:10.1103/PhysRevLett.100.165505


Haut de page



À lire aussi...

Real-time observation of non-equilibrium liquid condensate confined at tensile crack tips in oxide glasses

Wondraczek L., Ciccotti M., Dittmar A., Oelgardt C., Célarié F. and Marlière C., 2006. Real-time observation of non-equilibrium liquid condensate (...) 

> Lire la suite...

Mechanics of an adhesive tape in a zero degree peel test : effect of large deformation and material nonlinearity. Soft Matter. 2018

Hui C.Y, Liu Z., Minsky H., Creton C. and Ciccotti M., 2018. Mechanics of an adhesive tape in a zero degree peel test : effect of large (...) 

> Lire la suite...