Anisotropic super-attenuation of capillary waves on driven glass interfaces. Phys. Rev. Lett. 2017

Bresson B., Brun C., Buet X., Chen Y., Ciccotti M., Gâteau J., Jasion G., Petrovich M., Poletti F., Richardson D., Sandoghchi S.R., Tessier G., Tyukodi B., and Vandembroucq D., 2017.
Anisotropic super-attenuation of capillary waves on driven glass interfaces.
Phys. Rev. Lett. 119, Art N° 235501.

Metrological atomic force microscopy measurements are performed on the silica glass interfaces of photonic band-gap fibers and hollow capillaries. The freezing of attenuated out-of-equilibrium capillary waves during the drawing process is shown to result in a reduced surface roughness. The roughness attenuation with respect to the expected thermodynamical limit is determined to vary with the drawing stress following a power law. A striking anisotropic character of the height correlation is observed : glass surfaces thus retain a structural record of the direction of the flow to which the liquid was submitted.


Haut de page



À lire aussi...

Inertial and stick-slip regimes of unstable adhesive tape peeling, Soft Matter, 2016.

MJ Dalbe,R Villey, M Ciccotti, S Santucci, PP Cortet anc L Vanel, 2016. Inertial and stick-slip regimes of unstable adhesive tape peeling, Soft (...) 

> Lire la suite...

Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller, PRE, 2013

PP Cortet, MJ Dalbe, C Guerra, C Cohen, M Ciccotti, S Santucci, and Loïc Vanel, 2013. Intermittent stick-slip dynamics during the peeling of an (...) 

> Lire la suite...