Hidden order in crackling noise during peeling of an adhesive tape

Informations Contextuelles

We address the longstanding problem of recovering dynamical information from noisy acoustic emission signals arising from peeling of an adhesive tape subject to constant traction velocity. Using the phase space reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of correlation dimension as also a positive Lyapunov exponent in a midrange of traction velocities. The results are explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by clarifying its connection to stick-slip dynamics.

Kumar J., Ciccotti M. and Ananthakrishna G., 2008. Hidden order in crackling noise during peeling of an adhesive tape. Physical Review E. 77, Art N. 045202.

DOI:10.1103/PhysRevE.77.045202


Haut de page



À lire aussi...

The double torsion loading configuration for fracture propagation : improvement of the methodology for the load-relaxation at constant displacement

Ciccotti M., Gonzato G., and Mulargia F., 2000. The double torsion loading configuration for fracture propagation : improvement of the (...) 

> Lire la suite...

Large strain viscoelastic dissipation during interfacial rupture in laminated glass. Soft Matter, 2017.

P Elzière, C Dalle-Ferrier, C Creton, E Barthel and M Ciccotti, 2017. Large strain viscoelastic dissipation during interfacial rupture in (...) 

> Lire la suite...