Hidden order in crackling noise during peeling of an adhesive tape

Informations Contextuelles

We address the longstanding problem of recovering dynamical information from noisy acoustic emission signals arising from peeling of an adhesive tape subject to constant traction velocity. Using the phase space reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of correlation dimension as also a positive Lyapunov exponent in a midrange of traction velocities. The results are explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by clarifying its connection to stick-slip dynamics.

Kumar J., Ciccotti M. and Ananthakrishna G., 2008. Hidden order in crackling noise during peeling of an adhesive tape. Physical Review E. 77, Art N. 045202.

DOI:10.1103/PhysRevE.77.045202

Haut de page



À lire aussi...

Crack propagation at the interface between soft adhesives and model surfaces studied with a sticky wedge test, Soft Matter, 2013

S Bhuyan, F Tanguy, D Martina, A Lindner, M Ciccotti and C Creton, 2013. Crack propagation at the interface between soft adhesives and model (...) 

> Lire la suite...

Stress-enhanced ion diffusion at the vicinity of a crack tip as evidenced by atomic force microscopy in silicate glasses

Célarié F., Ciccotti M. and Marlière C, 2007. Stress-enhanced ion diffusion at the vicinity of a crack tip as evidenced by atomic force microscopy (...) 

> Lire la suite...