Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller, PRE, 2013

Informations Contextuelles

We study experimentally the fracture dynamics during the peeling at a constant velocity of a roller adhesive tape mounted on a freely rotating pulley. Thanks to a high speed camera, we measure, in an intermediate range of peeling velocities, high frequency oscillations between phases of slow and rapid propagation of the peeling fracture. This so-called stick-slip regime is well known as the consequence of a decreasing fracture energy of the adhesive in a certain range of peeling velocity coupled to the elasticity of the peeled tape. Simultaneously with stick slip, we observe low frequency oscillations of the adhesive roller angular velocity which are the consequence of a pendular instability of the roller submitted to the peeling force. The stick-slip dynamics is shown to become intermittent due to these slow pendular oscillations which produce a quasistatic oscillation of the peeling angle while keeping constant the peeling fracture velocity (averaged over each stick-slip cycle). The observed correlation between the mean peeling angle and the stick-slip amplitude questions the validity of the usually admitted independence with the peeling angle of the fracture energy of adhesives.

PP Cortet, MJ Dalbe, C Guerra, C Cohen, M Ciccotti, S Santucci, and Loïc Vanel, 2013.
Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller, PRE, 87, 022601.

Haut de page

À lire aussi...

Supramolecular Structure for Large Strain Dissipation and Outstanding Impact Resistance in Polyvinylbutyral. Macromolecules. 2019

Elzière P., Fourton P., Demassieux Q., Chennevière A., Dalle-Ferrier C., Creton C., Ciccotti M. and Barthel E., 2019. Supramolecular Structure (...) 

> Lire la suite...

Crack opening profile in DCDC specimen

Pallares G., Ponson L., Grimaldi A., George M., Prevot G. and Ciccotti M., 2009. Crack opening profile in DCDC specimen. Int. J. Fracture. 156, (...) 

> Lire la suite...