In-situ measurement of the large strain response of the fibrillar debonding region during the steady peeling of pressure sensitive adhesives, Int. J. Fracture, 2017

R Villey, PP Cortet, C Creton, M Ciccotti, 2017.
In-situ measurement of the large strain response of the fibrillar debonding region during the steady peeling of pressure sensitive adhesives, Int. J. Fracture, 204, 175–190.

The debonding of pressure sensitive adhesives (PSA) is a classical example of the difficult and unsolved issue of fracture in soft viscoelastic confined materials. The presence of a complex debonding region where the adhesive undergoes cavitation and the very large strain of a spontaneously formed fibrillar network has defied many modeling attempts over the past 70 years. We present here a novel technique to provide an accurate measurement of the local large strain response of the fibrillar debonding region during the steady-state peeling of a well known commercial adhesive over a wide range of peeling velocity and angle.
The technique is based on high resolution imaging of the debonding region during peeling and is coupled to a cohesive zone modeling of the adhesive interaction between the flexible tape backing and the rigid substrate.
The resulting database provides a strong ground for validating and further developing models (Villey et al. in Soft Matter 11:3480–3491, 2015) aiming to capture the effects of both geometry and non-linear adhesive rheology on the exceptional adherence energy of PSAs.


Haut de page



À lire aussi...

Intermittent stick-slip dynamics during the peeling of an adhesive tape from a roller, PRE, 2013

PP Cortet, MJ Dalbe, C Guerra, C Cohen, M Ciccotti, S Santucci, and Loïc Vanel, 2013. Intermittent stick-slip dynamics during the peeling of an (…) 

> Lire la suite...

Effects of finite probe size on self-affine roughness measurements

Lechenault F., Pallares G., George M., Rountree M., Bouchaud E. and Ciccotti M, 2010. Effects of finite probe size on self-affine roughness (…) 

> Lire la suite...