Self-Organization at the Crack Tip of Fatigue-Resistant Thermoplastic Polyurethane Elastomers. Macromolecules, 2021

Scetta G., Euchler E., Ju J., Selles N., Heuillet P., Ciccotti M. and Creton C., 2021. Self-Organization at the Crack Tip of Fatigue-Resistant Thermoplastic Polyurethane Elastomers. Macromolecules, 54(18), 8726-8737.

Despite their technological relevance, the resistance of soft thermoplastic polyurethanes (TPU) to crack propagation in cyclic fatigue has never been investigated in detail. In particular, a clear shortcoming in the literature for this class of materials is the lack of connection between the cyclic fatigue resistance and the large strain behavior that has a fundamental role in defining the material’s resistance to crack propagation. We demonstrate here for the first time that when the strain-induced stiffening mechanism of TPU (already observed for large deformation) is combined with the presence of the nonhomogeneous strain, as in the case of cyclic fatigue, it produces a selective reinforcement in the crack tip area, which is the key to explain the remarkable cyclic fatigue resistance of TPU. Using commercial TPU with similar modulus (∼8 MPa) but different large strain behavior, we show that the described mechanism stems from the multiphase nature of TPU and it is not necessarily linked to a specific large strain property as the case of TPU, which undergoes strain-induced crystallization.


Haut de page



À lire aussi...

On the kinetics of peeling of an adhesive tape under a constant imposed load

Barquins M., Ciccotti M., 1997. On the kinetics of peeling of an adhesive tape under a constant imposed load.Int. J. Adhesion and Adhesives. 17, (…) 

> Lire la suite...

Picometer-scale surface roughness measurements inside hollow glass fibres, Optics Express, 2014.

C Brun,X Buet,B Bresson, MS Capelle, M Ciccotti, A Ghomari, P Lecomte,JP Roger, MN Petrovich, F Poletti, DJ Richardson, D Vandembroucq,and G (…) 

> Lire la suite...