Hidden order in crackling noise during peeling of an adhesive tape

Informations Contextuelles

We address the longstanding problem of recovering dynamical information from noisy acoustic emission signals arising from peeling of an adhesive tape subject to constant traction velocity. Using the phase space reconstruction procedure we demonstrate the deterministic chaotic dynamics by establishing the existence of correlation dimension as also a positive Lyapunov exponent in a midrange of traction velocities. The results are explained on the basis of the model that also emphasizes the deterministic origin of acoustic emission by clarifying its connection to stick-slip dynamics.

Kumar J., Ciccotti M. and Ananthakrishna G., 2008. Hidden order in crackling noise during peeling of an adhesive tape. Physical Review E. 77, Art N. 045202.

DOI:10.1103/PhysRevE.77.045202


Haut de page



À lire aussi...

Cyclic fatigue failure of TPU using a crack propagation approach. Polymer Testing, 2021

Scetta G., Selles N., Heuillet P., Ciccotti M. and Creton C., 2021. Cyclic fatigue failure of TPU using a crack propagation approach. Polymer (...) 

> Lire la suite...

A realistic finite element study of the Double Torsion loading configuration

Ciccotti M., 2000. A realistic finite element study of the Double Torsion loading configuration. Journal of the American Ceramic Society. 83 (...) 

> Lire la suite...