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Abstract Sharp corners or wedges are common in

everyday structures. Depending on the internal angle

h0 of the wedge, severe stress concentration can occur.
Linear elasticity predicts that when an incompressible

elastic wedge is bonded to a rigid substrate and

subjected to plane strain deformation, the stresses at

the wedge tip has a power law singularity if h0 [ 45�.
For some h0 and for compressible wedges, the stresses

are not only singular but oscillate infinitely rapidly.

Here we show that these results are no longer true if

large deformation is taken into consideration. Specif-

ically, we determine the asymptotic fields near a tip of

a Blatz–Kowedge and found that the stress field has no

power singularity for h0 � 90�. Furthermore, the

power law singularity of the stress field differs from

those predicted by linear elasticity and there are no

oscillations. For sufficiently low compressibility, it is

possible to obtain higher order terms of the asymptotic

series—analogous to William’s expansion in linear

theory. Our asymptotic results are validated by finite

element calculations. We also studied the wedge tip

field for the borderline case of a 90� wedge. For this
case, the stress singularity is found to be at most

logarithmic.

Keywords Finite strain � Hyperelasticity �
Compressible � Wedge � Asymptotic analysis � Finite
element analysis

1 Introduction

Wedge shaped corners are ubiquitous in structures.

For example, the use of patches bonded with structural

adhesives is increasingly widespread in applications

such as aircrafts, cars and other transport related

applications. However, adhesively bonded patches

have problems of stress concentration at the corners

where crack initiation is prone to occur leading to the
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debonding of the patch. Such stress concentration can

be reduced by tapering the surfaces of the patch, but

tapering the adhesive is also an option (Marques and

da Silva 2008). In nature, small animals can achieve

strong and robust adhesion with small patches such as

the suction cups of octopus (Tramacere et al. 2014),

the sticky fibrils of mussels (Ornes 2013), vine tree and

gecko feet (Arzt et al. 2003). This strategy employed

by nature has motivated the development of bioin-

spired structured adhesive surfaces (Gorb et al. 2006;

Kim and Sitti 2006; Jagota and Hui 2011) to control

adhesion and friction. These surfaces are typically

made of an array of soft elastomeric fibers with shear

modulus on the order of 1 MPa. Adhesion is typically

measured against a rigid smooth surface such as glass.

Experimentally and theoretically, it has been found

that the shape of fiber tip can significantly affect

contact and adhesion (del Campo et al. 2007;

Spuskanyuk et al. 2008). Using finite element (FE)

simulations based on linear elasticity and a cohesive

zone model for debonding, Aksak et al. (2014) have

found that wedge shape fiber tips (see Fig. 1 insert)

with an internal angle of h0 = 45� optimize the pull-

off stress per unit contact area of a single fiber.1

Motivated by these applications, we study the

generic problem in Fig. 1 where a wedge in an elastic

solid is bonded to a rigid substrate; depending on the

internal angle h0 of the wedge, severe stress concen-

tration is known to occur.Williams (1952) was the first

to study the stress singularity near a wedge tip in a

linear isotropic elastic solid. He studied various sets of

boundary conditions (BC) on the radial edges of a

wedge in thin elastic plates under extension.William’s

ideas were later extended to wedges between dissim-

ilar linear elastic materials, including anisotropic solid

wedges (Bogy 1968; Hein and Erdogan 1971;

Dempsey and Sinclair 1979). The main goal of these

papers is to characterize the singular deformation and

stress fields near the tip of elastic wedges. The use of

these asymptotic fields to predict failure in applica-

tions can be found in Dunn et al. (1997a, b) and

Leguillon (2002). The idea is that these wedge

singular fields fully characterize the stress and strain

state near the wedge tip, hence their amplitude can be

used as a loading parameter to determine crack

initiation.

Here we note that all the above works are based on

linearized theory of elasticity where both the kine-

matics and material behavior are linear. As a result,

they generally work for hard and stiff solids. For soft

materials such as adhesives and elastomers, the

deformation near the wedge tip can be sufficiently

Fig. 1 Figure inside circle shows local geometry of wedge for

asymptotic analysis in the un-deformed reference configuration.

The lower edge of the wedge h ¼ 0 is bonded to the rigid

substrate. Its edge at h ¼ h0 is traction free. We consider plane

strain deformation where the out of plane displacement is

identically zero and the fields are independent of x3. The out of
plane coordinate x3 is not shown. Geometry in the simulation of

Aksak et al. (2014) is shown on the right

1 There are other geometrical factors such as the aspect ratio of

the fiber which control the optimal pull-off force.
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large to violate the small strain assumption. Because

of this, it is expected that there can be significant

differences between the prediction of small strain and

large deformation theory. For crack problems, these

differences have been studied by Knowles and Stein-

berg (1973, 1974, 1983), Stephenson (1982), Geubelle

and Knauss (1994a, b, c) and Gao (1990). The finite

strain crack tip fields exhibit characteristics that are

drastically different from those of the linear elastic

fracture mechanics solution, see Long and Hui (2015)

for a detailed review. On the other hand, there are

much fewer works on the behavior of the stress field

near the tip of hyper-elastic wedges. Most of these

works focus on homogeneous hyper-elastic solids

(Mansouri et al. 2016). However, in many applica-

tions, such as those mentioned above, the wedge is

bonded to very stiff substrates. This motivates us to

consider the stress and deformation field near the tip of

a hyper-elastic wedge (see Fig. 1) that is bonded to a

rigid substrate.

We consider plane strain deformation. The wedge

in this work is a compressible hyper-elastic solid

proposed by Blatz and Ko (1962). This material model

was used by Lengyel et al. (2014) to study the

asymptotic behavior of an interface crack between a

compressible hyper-elastic solid and a rigid substrate

which corresponds to h0 ¼ p. Here we study the

existence of singular fields near the wedge tip and, if

they exist, how they depend on the wedge angle. These

asymptotic solutions are validated by FE simulations.

The plan of this paper is as follows. In Sect. 2 we

review linear wedge asymptotic theory that is relevant

to this work. In Sect. 3 we introduce the finite strain

model for the wedge problem. The asymptotic solution

for p[ h0 [ p=2 is given in Sect. 4. In contrast to

linear theory, where the transition between singular

and non-singular tip solution occurs at h0 � p=4 for

solids with low compressibility, we found that there is

no power-law singular solution for h0 � p=2. In

Sect. 5, we check our asymptotic solution against FE

simulations. In Sect. 6, we study the transition case

where h0 ¼ p=2. Summary and discussion are given in

Sect. 7.

2 Linearized theory of wedge tip fields (LTW)

To gain perspective, we summarize results based on

linearized theory of elasticity that are relevant to this

study. Williams (1952) was the first to study the stress

singularity near a wedge tip in a linear isotropic elastic

solid. He studied various set of boundary conditions

(BC) on the radial edges of a wedge in thin plates

under extension. The BC that is relevant to this work is

a clamped/free boundary. The clamped edge repre-

sents the rigid substrate in our problem (see Fig. 1 for

geometry). We note here that William’s solution is for

plane stress deformation. However, the solution of

plane strain problems can be readily obtained from the

plane stress solution by a simple transformation of

elastic constants (Muskhelishvili 1977). The results

below are modified for plane strain deformation.

Williams (1952) showed that the in-plane asymp-

totic stress field sax, with respect to a polar coordinate
system ðr; hÞwith origin at the wedge tip, has the form

sax ¼ rm�1ŝax h; h0; m;A1;A2ð Þ; r ! 0 ð1Þ

where A1 and A2 are loading parameters that controls

the intensity of the stress field, m is the Poisson’s ratio
of the elastic wedge and ŝax are linear homogeneous

functions of A1 and A2. The parameters A1 and A2

cannot be determined from asymptotic analysis; they

depend on the geometry of the structure and the

manner of loading. In (1), m is the singularity index

which can be complex. Typically, one requires that the

real part of m to be greater than 0 so that the

displacement field is bounded. Here we note the

following:

• m is a function of the wedge angle h0 and the

Poisson’s ratio m. Specifically, the relation between
m and h0 for plane strain deformation is given by

the transcendental equation:

m2 sin2 h0 � 4 1� mð Þ2þ 3� 4mð Þ sin2 mh0ð Þ ¼ 0:

ð2Þ

• Note that the singularity index depends only on the

Poisson’s ratio and the wedge angle and is

otherwise independent of material properties such

as the shear modulus.

• m can be a complex number for some wedge

angles, i.e., m ¼ m1 þ im2 where i ¼
ffiffiffiffiffiffiffi

�1
p

. For

this case, the stress can be obtained by taking the

real or imaginary part of (1). Since

rm�1 ¼ rm1�1 cos m2 ln rð Þ þ i sin m2 ln rð Þ½ �; ð3Þ
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the stresses oscillate infinitely rapidly as r approaches

the wedge tip if m2 6¼ 0. Such oscillatory behavior is

well documented for interface cracks in bi-material

systems (England 1965; Rice and Sih 1965). Knowles

and Sternberg (1983) showed that such oscillatory

behavior arises from the linearization of the field

equations; by carrying out asymptotic analysis of the

nonlinear field equations governing an interface crack

between two compressible neo-Hookean sheets, they

found that the crack faces open smoothly, and the

stress field has no oscillatory behavior.

Figure 2 plots the numerical solution of (2) against

h0 for v ¼ 0.33, 0.45 and 0.5 (incompressible solid).

For the case of v ¼ 0:5, m is real for all angles.

However, this is not the case for v\0:5, where

complex root can exist. Note that Re m versus h0 has a
cusp at some m, to the left of this cusp, m is real while

m is complex to its right. The solid black line in Fig. 2

is the result of the finite strain theory (details are given

in Sects. 3–4). In finite strain theory there are no

complex roots and stresses has no power singularity

for h� p=2(see below for details).

We highlight the following results of the linear

theory for comparison purposes:

• The stress field has a power singularity and is

unbounded if Rem\1. It is bounded when

Rem� 1.

• For an incompressible solid loaded in plane strain,

m is always real and m ¼ 1 at h0 ¼ p=4 or 45

degrees. Thus, the stress and strain fields are

bounded and continuous when h0 � p=4. Note that
this is consistent with the result of Aksak et al.

(2014), suggesting that the optimal pull-off force

occurs when the singular fields near the wedge tip

is eliminated.

• For compressible solids, m is complex for wedge

angles, h0 [ hc mð Þ, where hc mð Þ denotes the critical
angle where the transition from real to complex

root occurs. A plot of hc mð Þ versus m is given in the
SI. For wedge angles greater than hc mð Þ, the stress
field is singular and oscillates infinitely rapidly at

the tip. We shall see later that this oscillatory

behavior is absent in large deformation.

• For h0 ¼ p=2, m ¼ m1\1 for all m[ 0, hence the

stress has a non-oscillatory singularity rm�1. As

shown in Fig. 3, the singularity index is found to

decrease with increasing v; hence the stress is most

singular when m ¼ 1=2. We shall see later that the

large deformation solution does not admit a power

law singularity when h0 ¼ p=2. Instead, a much

weaker logarithmic singularity is found for this

case.

A brief discussion of transition between the linear

and nonlinear asymptotic solutions are given in the SI.

Fig. 2 The real part of the singularity index m in the linear

theory for v ¼ 0.33, 0.45 and 0.5

Fig. 3 The singularity index for h0 ¼ p=2 as a function of the

Poisson’s ratio v. For this angle m is always real and less than 1
except at v ¼ 0, indicating that the stress has power singularity

of the form rm�1 for v[ 0
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3 Finite strain model of wedge tip fields

3.1 Problem formulation and geometry

The geometry consists of a compressible hyper-elastic

wedge of angle h0 bonded to the surface of a rigid

substrate (see Fig. 1). A material point in the reference

undeformed configuration is denoted by its Cartesian

coordinates xi (i = 1, 2, 3). We consider plane strain

deformation where all field quantities are independent

of the out of plane coordinate x3. In the following we

will use Greek indices to denote in plane coordinates,

e.g., xa,a ¼ 1; 2. Details on plane strain deformation

were given by Stephenson (1982). Here we summarize

the basic equations.

In plane strain, the out of plane deformation is

exactly zero, so deformation can be represented by a

2D deformation gradient tensor F with Cartesian

components Fax ¼ oya=oxx, where ya ¼ xa þ
ua x1; x2ð Þ is the deformed coordinates of the material

point and ua is its displacement in the a direction. The
strain energy density function W for an isotropic

hyper-elastic solid undergoing plane strain deforma-

tion is a function of two invariants I ¼ tr FFT
� �

and

J ¼ detF. The 1st Piola or nominal stress tensor P is

related to WðI; JÞ by

P ¼ 2
oW

oI
Fþ J

oW

oJ
F�T : ð4Þ

The true or Cauchy stress tensor s is related to the 1st

Piola stress tensor by

s ¼ J�1PFT ð5Þ

3.2 Material model

We consider a compressible hyper-elastic solid pro-

posed by Blatz and Ko (1962). As noted in the

introduction, this material model was used by Lengyel

et al. (2014) to study the asymptotic behavior of an

interface crack between a compressible hyper-elastic

solid and a rigid substrate h0 ¼ pð Þ. The 2D plane

strain energy density function is given by

W ¼ l
2

I � 2ð Þ þ l
2b

J�2b � 1
� �

; ð6Þ

where l is the small strain shear modulus. The

dimensionless constant b is the compressibility factor,

it is related to the small strain Poisson’s ratio m by

b ¼ m= 1� 2mð Þ� 0. This relation indicates that large

b corresponds to low compressibility. For many soft

materials, such as elastomers and gels, the resistance

to shear is much smaller than the resistance to

compression, resulting in b[ [ 1. For example, an

elastomer used in many applications is Polydimethyl-

siloxane (PDMS). The Poisson’s ratio of PDMS

(Sylgard 184, from Dow Chemical Company) was

reported by Müller et al. (2019) to be 0.495, which

corresponds to b ¼ 49:5. The in-plane nominal stress

tensor components Pab are obtained using (4) and (6),

they are

P11¼l F11�J�2b�1F22

� �

; P12¼l F12þJ�2b�1F21

� �

P21¼l F21þJ�2b�1F12

� �

; P22¼l F22�J�2b�1F11

� �

ð7a�dÞ

The in-plane true stress components sax are evaluated

using (7a–d) and (5), they are:

s11 ¼ J�1l F2
11 þ F2

12

� �

� J�2b
� �

s12 ¼ s21 ¼ J�1l F11F21 þ F12F22½ �
s22 ¼ J�1l F2

21 þ F2
22

� �

� J�2b
� �

ð8a� dÞ

3.3 Equilibrium

In the absence of body forces,2 the equilibrium

equations in the reference configuration are

rx � P ¼ 0 ð9Þ

Substituting (7a–d) into (9), the equilibrium equa-

tions are:

r2
xy1 þ 2bþ 1ð ÞJ�2 bþ1ð Þ rxJ 	rxy2ð Þ � E3 ¼ 0

r2
xy2 � 2bþ 1ð ÞJ�2 bþ1ð Þ rxJ 	rxy1ð Þ � E3 ¼ 0

ð10a; bÞ

where E3 is the unit vector in the out of plane direction

and r2
x is the 2D Laplacian in reference coordinates.

As in Sect. 2, we use the polar coordinates r; hð Þ in the
reference configuration as independent variables:

x1 ¼ r cos h; x2 ¼ r sin h ð11Þ

2 As long as the body forces are bounded, they have no effect on

the leading singular behavior of the fields.
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Using r; h as independent variables, the equilibrium
Eqs. (10a, b) become:

1

r

o

or
r
ou1
or

	 


þ 1

r2
o2u1

oh2
þ 2bþ 1ð ÞJ�2 bþ1ð Þ

r

oJ

or

oy2
oh

� oy2
or

oJ

oh

� �

¼ 0

1

r

o

or
r
oy2
or

	 


þ 1

r2
o2y2

oh2
� 2bþ 1ð ÞJ�2 bþ1ð Þ

r

oJ

or
�r sin hþ ou1

oh

	 


� cos hþ ou1
or

	 


oJ

oh

� �

¼ 0

ð12a; bÞ

where J is

J ¼ 1

r
cos hþ ou1

or

	 


oy2
oh

� oy2
or

�r sin hþ ou1
oh

	 
� �

ð12cÞ

These equations are the same as in Lengyel et al.

(2014). However, it must be noted that Lengyel et al.

(2014) used the symbol xa to denote deformed

coordinates. Also, instead of using y1; y2 as the

dependent variables, which is typically adopted in

nonlinear field analysis, we use u1; y2 as the dependent

variables. Since y1 ¼ u1 þ r cos h, the usage of u1 as

independent variable made the BC y1 ¼ r on the

interface homogeneous (see (13a) below).

3.4 Boundary conditions (BC) for asymptotic

analysis

We consider perfect bonding, hence the displacements

on the interface h ¼ 0; r[ 0 are identically zero, i.e.,

u1 h ¼ 0; r[ 0ð Þ ¼ 0; y2 h ¼ 0; r[ 0ð Þ ¼ 0

ð13a; bÞ

The edge of the wedge at h ¼ h0; r[ 0 is traction free,

i.e.,

P � N ¼ 0 ð14Þ

where N is the unit normal vector to the free edge.

Using (7a–d), the BC (14) can be written in terms of

u1; y2 as:

� sin h0 þ
1

r

ou1
oh

þ J�2b�1 oy2
or

¼ 0 at h ¼ h0

1

r

oy2
oh

� J�2b�1 cos h0 þ
ou1
or

	 


¼ 0 at h ¼ h0

ð15a; bÞ

4 Asymptotic analysis of wedge tip fields

4.1 Asymptotic analysis

In this work we assume h0\p since the crack case

where h0 ¼ pwas solved by Lengyel et al. (2014). We

consider the expansion near r = 0,

u1 ¼ rm1v1 hð Þ þ o rm1ð Þ
y2 ¼ rm2v2 hð Þ þ o rm2ð Þ 0\ma\1

ð16a; bÞ

The condition 0\ma\1 enforces continuity of

displacements but allows for singular stresses and

displacement gradients. Substituting (16a, b) into

(12c), we found

J
 1

r
cos hþ m1r

m1�1v1
� �

rm2v02
�

�m2r
m2�1v2 �r sin hþ rm1v01

� ��


 rm1þm2�2 m1v1v
0
2 � m2v2v

0
1

� �

ð17Þ

Equation (16a) implies that the Laplacian term in

(12a) is

r2
xu1 
 rm1�2 v001 þ m2

1v1
� �

; ð18aÞ

while the 3rd term in (12a) (we will call this the

nonlinear term) is

J�2 bþ1ð Þ

r

oJ

or

oy2
oh

� oy2
or

oJ

oh

� �


 r�2 bþ1ð Þ m1þm2�2ð Þr2m2�2rm1�2

ð18bÞ

Using (18a, b), the ratio of the nonlinear to the

Laplace term is seen to vanish as r goes to zero, i.e.,

r�2 bþ1ð Þ m1þm2�2ð Þr2m2�2 ¼ r�2 bþ1ð Þ m1�1ð Þr�2b m2�1ð Þ

! 0;

ð19Þ

where we have used 0\ma\1. Hence the nonlinear

term (18b) can be neglected and the leading order

behavior of (12a) is determined by (18a), i.e.,
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v001 þ m2
1v1 ¼ 0: ð20Þ

The solution of (20) that satisfies the BC (13a) is

v1 ¼ a1 sin m1hð Þ; ð21Þ

where a1 is an arbitrary constant. To satisfy the

traction free boundary condition (15a), we note that

the third term in (15a) is of order

J�2b�1 oy2
or


 r� 2bþ1ð Þ m1þm2�2ð Þrm2�1

¼ r� 2bþ1ð Þ m1�1ð Þr�2b m2�1ð Þ: ð22Þ

Comparing the order of each term in (15a) is of order

(15a), we have

� sin h0
|fflfflfflffl{zfflfflfflffl}

Oð1Þ

þ 1

r

ou1
oh

|ffl{zffl}

Oðrm1�1Þ

þ J�2b�1 oy2
or

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Oðr� 2bþ1ð Þ m1�1ð Þr�2b m2�1ð ÞÞ

¼ 0 : ð23Þ

The dominant term in (23) is clearly 1
r
ou1
oh , hence, to

leading order, the BC (15a) becomes:

ou1
oh

�

�

�

�

h0

¼ 0 ) v01 h0ð Þ ¼ 0 ) cos m1h0ð Þ ¼ 0 ) m1

¼ p
2h0

:

ð24Þ

Equation (24) determines the singularity index for

the horizontal displacement u1. Here we note the

assumption that m1\1 holds if and only if h0 [ p=2.
We next consider the leading order solution of

(12b), the Laplacian term is

r2y2 
 rm2�2 v002 þ m2
2v2

� �

: ð25aÞ

The nonlinear term is:

J�2 bþ1ð Þ

r

oJ

or
�r sin hþ ou1

oh

	 


� cos hþ ou1
or

	 


oJ

oh

� �


 r�2 bþ1ð Þ m1þm2�2ð Þr2m1�2rm2�2;

ð25bÞ

which goes to zero in comparison with the Laplacian

term. Therefore,

v002 þ m2
2v2 ¼ 0 ) v2 ¼ a2 sinm2h ð26Þ

where we have used the BC (13b). The same argument

shows that the leading order behavior of (15b) is

oy2
oh


 0 at h ¼ h0 ) cos m2h0ð Þ ¼ 0: ð27Þ

Equation (27) implies that

m2 ¼
p
2h0

¼ m1 � m: ð28Þ

Thus, the singularity index for u1 and y2 is equal.
We need to recalculate J since the leading order

term in (17), m1v1v
0
2 � m2v2v

0
1

� �

¼ m v1v
0
2 � v2v

0
1

� �

vanishes identically [See (21) and (26)]. A simple

calculation using [(17), upper equation] shows that

J
 1

r
cos hþ a1mr

m�1 sinmh
� �

a2r
mm cosmh

�

�a2mr
m�1 sinmh �r sin hþ a1mr

m cosmhð Þ
�

¼ a2mr
m�1 cos 1� mð Þh½ �

ð29Þ

Comparing (29) with (17) shows that the leading

order behavior of J has changed because

m1v1v
0
2 � m2v2v

0
1

� �

vanishes, it is now rm�1 instead

of r2m�2. However, sincem\ 1, J is still unbounded as

r goes to zero. Note J is non-zero inside and on the

wedge boundaries since cos 1� mð Þh½ �[ 0 in

0� h� h0. However, because m1v1v
0
2 � m2v2v

0
1

� �

vanishes identically, J is now of order rm�1, so we

need to check that the Laplacian terms in (12a,b) still

dominate the nonlinear term. This is indeed the case

since

J�2 bþ1ð Þ

r

oJ

or

oy2
oh

� oy2
or

oJ

oh

� �


 r�2 bþ1ð Þ m�1ð Þrm�1rm�2 [[ rm�2;

ð30aÞ

J�2 bþ1ð Þ

r

oJ

or
�r sin hþ ou1

oh

	 


� cos hþ ou1
or

	 


oJ

oh

� �


 r�2 bþ1ð Þ m�1ð Þrm�1rm�2 [[ rm�2:

ð30bÞ

Thus, (21), (26), (28) are still valid provide that the

leading behavior of J is given by (29).

4.2 Higher order terms

Our result in previous section shows that, in contrast to

the linear theory wherem is a function of the Poisson’s

ratio [see (2)], the singularity index m in the leading

order solution of the finite strain theory does not
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depend on the compressibility factor b [see (28)]. We

show here that the effect of compressibility is man-

ifested in higher order terms in the asymptotic

expansion [see (43) below]. To see this, consider

u1 ¼ a1r
m sinmhþ rn1w1 hð Þ þ o rn1ð Þ

y2 ¼ a2r
m sinmhþ rn2w2 hð Þ þ o rn2ð Þ where na � 1

ð31a; bÞ

Since the first terms in (31a, b) satisfy the Laplace

equation exactly, we have

r2u1 
 rn1�2 w00
1 þ n21w1

� �

r2y2 
 rn2�2 w00
2 þ n22w2

� � ð32a; bÞ

The leading order of J is still given by (29), more

precisely,

J ¼ rm�1a2m cos 1� mð Þh½ � þ o rm�1
� �

ð33Þ

Using (33) and (31a, b), the leading order behavior

of the nonlinear term in (12a) is

1

r

oJ

or

oy2
oh

� oy2
or

oJ

oh

� �


m2 1� mð Þa22rm�1rm�2

cosmh cos 1� mð Þh½ � þ sinmh sin 1� mð Þh½ �ð Þ
¼ m� 1ð Þa22m2rm�1rm�2 cos h

ð34Þ

Combining (34) and (33), the leading order behav-

ior of the nonlinear term in (12a) is

J�2 bþ1ð Þ 1

r

oJ

or

oy2
oh

� oy2
or

oJ

oh

� �

¼ Oðr2 bþ1ð Þð1�mÞrm�1rm�2Þ ¼ O r2bð1�mÞ�1
� �

ð35Þ

Let us first assume that n1 [ 1. If the nonlinear term is

small in comparison with the Laplacian term as r goes

to zero, then

n1 � 2\2b 1� mð Þ � 1 , n1\1þ 2b 1� mð Þ:
ð36Þ

Since 1=2\m\1, for any fixed h0 [ p=2 (36) is

true for sufficiently large b. Let us assume this is the

case since we are mostly interested in solids with low

compressibility, then the Laplacian term dominates

which results in

w00
1 þ n21w1 ¼ 0 ) w1 ¼ b1 sin n1hð Þ: ð37Þ

Let us consider the boundary condition (15a). By

(24), the term 1
r
ou1
oh in (15a) is of order rn1�1w0

1.

However, it is impossible for this term to dominant

(unless sin h0 ¼ sin p ¼ 0, recall we exclude the crack

case) since n1 [ 1 and this term vanishes as r goes to

zero. The last term in the BC (15a) is

J�2b�1 oy2
or


 r 2bþ1ð Þ 1�mð Þrm�1 ¼ r 2bð Þ 1�mð Þ; ð38Þ

which also goes to zero as r goes to zero since m\ 1.

By (36) this term is small compared with 1
r
ou1
oh 
 rn1

r w0
1

as r goes to zero. Thus, the 1st term in the BC (15a)

dominates and the BC (15a) cannot be satisfied. This

means that it is not possible for n1 [ 1. The only

choice is n1 ¼ 1. For this case (36) is always satisfied

since m is less than 1, so the Laplacian term dominates

and (32a) and (13b) implies that

w1 ¼ b1 sin h: ð39Þ

What about the BC (15a)? Using (38), the order of

each term in (15a) is:

� sin h0 þ b1 cos h0 þ J�2b�1 oy2
or

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

r2b 1�mð Þ!0

¼ 0 ) b1 ¼ tan h0:

ð40Þ

Hence the 2nd order solution for u1 is r tan h0 sin h,
that is

u1 ¼ a1r
m sinmhþ r tan h0 sin hþ oðrÞ: ð41Þ

Having determine the next order term for u1, we

turn to y2. Using (29), the first order behavior of the

nonlinear term in (12b) is:

J�2 bþ1ð Þ

r

oJ

or
�r sin hþ ou1

oh

	 


� cos hþ ou1
or

	 


oJ

oh

� �


 r2 bþ1ð Þ 1�mð Þr2m�3 a2m cos 1� mð Þh½ �f g�2 1þbð Þ

a1a2 m� 1ð Þm2 cos h

ð42Þ

Again, the Laplace term in (12b) is of order rn2�2,

assuming it dominates (this requires b to be suffi-

ciently large, exactly how large we shall see below),

we must have

rn2�2 [[ r2 bþ1ð Þ 1�mð Þr2m�3 ) n2\2b 1� mð Þ þ 1

ð43Þ
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Equation (43) implies that the linear term of the

boundary condition (15b) is the dominant term, so:

1

r

oy2
oh


 0 at h ¼ h0 and y2 h ¼ 0ð Þ ¼ 0 ð44Þ

Since n2 � 1, the solution of the Laplacian (32b) is

b2r
n2 sin n2h; n2 ¼

3p
2h0

ð45Þ

Thus,

y2 ¼ a2r
m sinmhþ b2r

n2 sin n2hþ o rn2ð Þ ð46Þ

To summarize, the asymptotic expansion of the

deformed coordinates are:

y1 ¼ a1r
m sinmhþ r tan h0 sin hþ cos hð Þ þ oðrÞ

y2 ¼ a2r
m sinmhþ b2r

n2 sin n2hþ o rn2ð Þ

m ¼ p
2h0

p=2\h0\p

ð47a� cÞ

Equation (47a) shows that the 2nd order term of y1
is given by r tan h0 sin hþ cos hð Þ instead of r cos h.
Since J depends on the combination of leading and 2nd

order terms of y1, we need to reevaluate J using

(47a,b). A straightforward calculation using (47a,b)

shows that the leading order behavior of J is

J
ma2r
m�1 cos h0 � 1� mð Þhð Þ

cos h0ð Þ � ma2r
m�1j hð Þ

m ¼ p
2h0

ð48Þ

Note that J has the same power law singularity as in

(33). However, although it is positive everywhere for

0� h\h0, it vanishes at h0 since m ¼ p
2h0

. The

vanishing of J on the free edge implies that there is a

boundary layer at h ¼ h0. The vanishing of J is

important, because the traction free BC (24) and (27)

relies on the assumption that the boundary terms

associated with J were subdominant. This assumption

is questionable if the asymptotic behavior of J at h ¼
h0 were unknown. The same issue was faced by Lenyel

et al. (2014), who derived the near-tip fields for the

special case of an interface crack where h0 ¼ p. In
their work, they also found J vanishes at the crack face.

They showed that J does not vanish at h ¼ p but has a

different asymptotic behavior as r ! 0. Following the

same line of reasoning [see Supporting information

(SI)], we found a similar result where

J r ! 0; h ¼ h0ð Þ ¼ O r� 1�mð Þ= 1þbð Þ
� �

: ð49Þ

Substituting (49) into the traction free BC confirms

that (24) and (27) is still valid, hence our leading order

solution given by (47a,b) is still valid for all b[ 0.

However, the higher order terms in (47a,b) are only

valid away from the boundary layer near the free edge.

This claim is verified by the FE solution below.

4.3 Stresses

Using (47a,b), the components of the deformation

gradient tensor, to leading order are

F11 ¼ a1mr
m�1 sin m� 1ð Þh½ �; F12 ¼ a1mr

m�1 cos m� 1ð Þh½ �
F21 ¼ a2mr

m�1 sin m� 1ð Þh½ �;F22 ¼ a2mr
m�1 cos m� 1ð Þh½ �

ð50a� dÞ

The leading asymptotic behavior of the 1st Piola

stresses can be evaluated using (7a–d) by ignoring the

high order J�2b�1 term and using (50a–d), this results

in

P11¼la1mr
m�1 sin m�1ð Þh½ �;P12¼la1mr

m�1cos mþ1ð Þh½ �
P21¼la2mr

m�1 sin mþ1ð Þh½ �;P22¼la2mr
m�1cos m�1ð Þh½ �

ð51a�dÞ

The leading behavior of the true stresses are found

using (8a-d), these are:

s11 ¼ l
a21mr

m�1

a2jðhÞ
s12 ¼ s21 ¼ la1mr

m�1=j hð Þ
s22 ¼ la2mr

m�1=j hð Þ;

ð52a� cÞ

where j hð Þ is defined by (48). Note angular variation of
true stress is identical for different stress components.

In particular, all stress components have the same

power law singularity at the wedge tip, reflecting the

mixed mode nature of the local fields. Analogous to

stress intensity factors in fracture mechanics, the

parameters a1; a2 uniquely characterize the strength of

the singularity near the wedge tip. Equations (52a–c)

imply that the ratio of different true stress components

are constants independent of r and h. Specifically,

s12=s11 ¼ s22=s12 ¼ a2=a1: ð53Þ
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The ratio a2=a1 measures the ratio of interfacial

shear stress to the transverse stress (s11) or the ratio of
the normal stress to the shear stress respectively. In

analogy to interfacial fracture mechanics, we define a

phase angle /p

/p � tan�1 a2=a1ð Þ ¼ tan�1 s12=s11ð Þ
¼ tan�1 s22=s12ð Þ: ð54aÞ

Equations (47a, b) provide another interpretation of

phase angle, that is,

lim
r!0;h¼h0

y2=y1ð Þ ¼ a2=a1 ð54bÞ

Equation (54b) shows that the free edge of the

wedge near the tip deforms into a straight line with

slope given by the phase angle /p. It is important to

note that the intensity factors aa cannot be determined

by asymptotic analysis since they depend on the

manner of loading and specimen geometry. Therefore,

the local slope of the deformed wedge depends on the

applied load and the specimen geometry.

4.4 Deformed shape of the free edge

The asymptotic behavior (47a,b) states that at the free

edge

y1 
 a1r
m � c h0ð Þr; where c h0ð Þ

� � tan h0 sin h0 þ cos h0ð Þ ¼ � sec h0 [ 0 ð55aÞ

y2 
 a2r
m ð55bÞ

Thus, the deformed free surface is locally described

by the equation

y1 ¼
a1
a2

y2 � c h0ð Þ y2=a2ð Þ1=m ð55cÞ

The location of the maximum of y1 is found by

solving dy1=dy2 ¼ 0, i.e.,

a1
a2

¼ c h0ð Þ
m

y2=a2ð Þ1=my�1
2 ) y2 ¼ a1m cos h0½ �

m
1�ma2

ð55dÞ

4.5 More higher order terms:William’s expansion

for nonlinear fields p� h0 [ p=2ð Þ

Depending on b, we can generate additional higher

order terms and obtain a William’s type of expansion

for nonlinear fields for wedge angle greater than 90�.
Let

u1 ¼ a1r
m sinmhþ r tan h0 sin hþ rm12v12 hð Þ þ o rm12ð Þ

y2 ¼ a2r
m sinmhþ a22r

m22 sinm22hþ rm23v23 hð Þ þ o rm23ð Þ
ð56a; bÞ

where we have modified notations in (47a,b) so b2 ¼
a22 and m22 ¼ n2 ¼ 3p=2h0. Also, m12 [ 1 and

m23 �m22 ¼ 3p=2h0. Substituting (56a,b) and (53)

into the BC (15a) shows that

v012 h0ð Þ ¼ 0 ð57aÞ

provide that

m12\2b 1� mð Þ þ 1: ð57bÞ

Then it is easy to verify that the Laplacian term in

(12a) is, to leading order

r2u1 
 rm12�2 v0012 þ m2
12v12

� �

ð58Þ

and is asymptotic dominant compared with the

nonlinear term provided that (57b) is satisfied.

Equations (58) and (57a) and (13a) imply that

v12 ¼ a12 sin m12hð Þ; wherem12 ¼ 3p= 2h0ð Þ ð59Þ

Thus, the higher order terms depend on the value of

b. Since we are interested in almost incompressible

solids, b is typically very large so the condition (57b)

2b 1� mð Þ þ 1[m12 ¼ 3p= 2h0ð Þ ð60Þ

is easily satisfied. Following the same line of reason-

ing we can determine m23 and v23 hð Þ in (56b),

Indeed, we can continue this process to any positive

integer N� 2 provided that

maN\2 1� mð Þbþ 1; a ¼ 1; 2 ð61Þ

The result is:

u1 ¼ a1r
m sinmhþ r tan h0 sin h

þ
X

N

k¼2

rm1k sin m1khð Þ þ o rm1;Nð Þ

y2 ¼ a2r
m sinmhþ

X

N

k¼2

a2kr
m2k a2k sin m2khð Þ þ o rm2;Nð Þ

ð62a; bÞ

where
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m2k ¼ m1k ¼
2k � 1ð Þp
2h0

ð62cÞ

Note the number of terms in the asymptotic series

(62a,b) depend on b; specifically, this dependence is

given by the inequality:

2N � 1ð Þp
2h0

\2b 1� mð Þ þ 1: ð62dÞ

It should be noted that, unlike the William’s

expansion, which is an infinite series that converges

within some radius of convergence at the crack tip;

(62a,b) are asymptotic series, hence convergence is

not guarantee, so including more terms of the series do

not always lead to better accuracy.

5 Finite element results

5.1 Finite element (FE) calculations

We use FE to check our asympototic analyses. The

geometry of the wedge structure and the FE model is

shown in Fig. 4a and b. Calculations are performed

using ABAQUS 2019. The bulk is modeled as a

compressible Blatz–Ko material with energy density

function given by (6). Calculations are performed

using b ¼ 4:5 which corresponds to m ¼ 0:45. Let L be

any arbitrary length scale, the specimen has a

rectangular cross-section with sides 10L	 11L. On

the top edge (BC), a uniform vertical displacementD is

imposed while the horizontal shear traction is set to

zero. The loading is controlled by the nominal stretch

ratio k � 1þ D
11L. On the line directly ahead of the

wedge tip (OD), the vertical and horizontal displace-

ments are set to zero to simulate perfect bonding with

the rigid substrate. The wedge face AO is traction free.

The sides AB and CD are free of shear traction and

remain straight during deformation. Our choice of

boundary conditions is similar to those used by Lenyel

et al. (2014). This choice allows us to check our FE

result against theirs for the special case of h0 ¼ p(in-
terface crack). Following Lenyel et al. (2014), we use

triangular elements for the entire mesh to prevent

over-distortion of elements. Plane strain CPE6H

elements are used. To balance the accuracy and

efficiency of computation, we use a fine mesh near the

wedge tip (the smallest element size is * 1	 10�5L),

while away from the tip the element size increases and

is 
 L=2 near the top edge. Our convergence test

shows that further refinement of the mesh does not

affect the FE results.

Fig. 4 (a, left) Wedge geometry in undeformed reference

configuration, (b, right) Mesh used in FE calculation. A uniform

vertical displacementD is applied on the edge BCwhile the edge

OD is fixed to the rigid substrate. On AB the shear traction is

zero. The wedge face AO is traction free. The sides AB and CD

are free of shear traction and remain straight during deformation

(this removes the stress concentration at the corners at A andD).
In this geometry, the only loading parameter is the nominal

stretch ratio k � 1þ D
11L
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5.2 Comparison of FE results with asymptotic

theory

We carried out simulations for various obtuse wedges

h0 [ p=2 and for b ¼ 4:5. Here we present results for

h0 ¼ 3p=4 ¼ 1350. FE results for other values of h0
also validate our asymptotic results and are given in

the S3. Figure 5 shows that true stresses on the

interface h ¼ 0ð Þ versus distance from the wedge tip.

The asymptotic results (52a–c) (solid lines with slope

�1=3 in a log–log plot) are also plotted for compar-

ison. The FE and asymptotic results are in good

agreement for r=L\10�3.

To check the angular dependence of the true

stresses we plot normalized FE true stress components

sab � sab r=L ¼ 10�3; hð Þ=sab r=L ¼ 10�3; h ¼ 0ð Þ in

Fig. 6. If our asymptotic results (52a–c) are correct,

then different components of sab should coincide with
1=j hð Þ. Figure 6 shows that this is indeed the case

except for a boundary layer at h0 where j h0ð Þ ¼ 0. As

noted earlier, the existence of this boundary layer is

expected [see discussion right after (48)]. The

deformed shape of the free edge obtained from FE is

shown in Fig. 7. Plotted in the same figure is the

asymptotic result (55c). Again, there is good agree-

ment between theory and FE results.

6 Special case: 90� wedge

6.1 Shallow wedges:0\h0 � p=2

We call wedges with angles less than or equal to 90

degrees shallow wedges. For these wedges, our

analysis indicates that the stresses cannot have a

power singularity. Of course, this result does not

Fig. 5 Normalized true stresses on the interface h ¼ 0ð Þ for a
135� wedge. Symbols are FE result, and the solid lines are the

asymptotic results predicted by (52a–c)

Fig. 6 Different components of the normalized true stress

versus h. Prediction of the asymptotic results given by (52a–c)

are the solid lines

Fig. 7 Deformed shape of the free edge. Black solid line is the

FE result and red solid line is the asymptotic result (55c). The

undeformed wedge surface (with angle h0 ¼ 3p=4) is the dotted
line
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prevent the stresses having a weaker singularity (e.g., a

logarithmic singularity in r). Here we focus on the

border-line case where h0 ¼ p=2. This case appears

often in applications, since many structures have 90�
corners. Another reason to study this case is that we

expect wedges with angles smaller than 90� will have
weaker singularities, if they exist at all.

6.2 Results for 90� wedge

The structure of the asymptotic fields near the corner

turns out to be very difficult to analyze and we have

not been able to obtain exact results. For this reason,

we first present FE results. These FE results provide

valuable insight on the near wedge tip fields. Based on

these results, we obtain approximate close form

expressions for the true stresses near the wedge tip.

The FE geometry is a square with sides 10L. The

boundary conditions are the same as h0 [ p=2.
The normalized true stresses sax=l along the

interface h ¼ 0ð Þ versus distance r from the wedge

tip for two different applied stretch ratios k ¼ 1:5; 5:0

are plotted in Fig. 8a, b. As shown in Fig. 8a, b, these

FE results (symbols) of near tip stress components can

be well approximated by

s11=l ¼ B1 ln rð Þ2þC1 ln r þ D1

s12=l ¼ C2 ln r þ D2

s22=l ¼ D3

ð63a� cÞ

The dimensionless parameters Bi;Ci and Di in

(63a–c) are functions of h and the applied stretch ratio
k.

To study the angular variation of Bi;Ci;Di we

evaluate the true stresses on h ¼ p=2. On this edge, the
traction free condition implies that (see SI)

s11s22 ¼ s212 h ¼ p=2 ð64Þ

We also confirmed (64) using our FE calculation.

Equation (64) implies that Bi;Ci;Di are not indepen-

dent. Another way to see this is that stresses must

satisfy equilibrium. Figures 9a, b plot the true stress

along h ¼ p=2 for two different applied stretches. The
asymptotic results given by (63a–c) are plotted in the

same figure as a comparison. Again, the agreement

between FE and (63a–c) is excellent. These results

strongly support the validity of (63a–c) for all angles.

Results for true stress along h ¼ p=6; p=3 are given in
Supporting Information.

The deformed shapes of the free edge are shown in

Fig. 10 for k ¼ 1:5, 2 and 5. It is interesting to note

Fig. 8 True stress components directly ahead of wedge tip h ¼ 0ð Þ for a 90 degrees wedge. a (left), k ¼ 1:5, b = 4.5. b (right),k ¼ 5,

b = 4.5. Symbols are FE results and solid lines are Eq. (63a–c)
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that the local wedge shape is not a monotonic function

of the applied stretch. Up till k � 2, the lateral surface

contraction increases. This trend is reversed at large

stretch ratio, e.g., k ¼ 5. This behavior is due to finite

compressibility.

Figure 11 plots the asymptotic behavior of y1 and

y2 on h ¼ p=2, that is, the local deformed coordinates

of the wedge surface. This figure shows that the

expressions

Fig. 9 True stress distribution along the free edge for b = 4.5. k ¼ 1:5(a, left). k ¼ 5 (b, right). Symbols are FE results and solid lines

are Eq. (63a–c)

Fig. 10 Finite element results for the deformed shape of the free

edge near the tip of a 90 degrees wedge for b ¼ 4:5. The applied
stretch ratios are k ¼ 1:5, 2.0 and 5.0. Local deformed shapes

with origin at the wedge tip (left). Right figure shows the

reference configuration k ¼ 1ð Þ and the deformed shapes

Fig. 11 Deformed coordinates yi i ¼ 1; 2ð Þ versus normalized

distance along the free edge (h ¼ p=2). The symbols are FE

results, and the solid lines are the asymptotic expressions (65a,b)
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y1 
A1r ln rð Þ2
h i

b
2bþ1

y2 
A2r ln rð Þ2
h i

b

2bþ1ð Þ2 ;

ð65a; bÞ

provide a good fit to the FE result. In (65a,b), A1 andA2

are dimensionless parameters that depend on k and h.
Here we note that (65a,b) imply that

y2
y1


 A2

A1

ln rð Þ�2
h i

2b

2bþ1ð Þ2 ð66Þ

Thus, the local slope vanishes at the wedge tip (recall

that this local slope is always positive for an obtuse

wedge).

7 Summary and discussion

A finite strain model based on a compressible Blatz–

Ko model is used to study the plane strain deformation

field near the tip of wedges with internal angles

h0 2 0;pð Þ. For reentrant corners where h0 [ p=2, the
true stresses (as well as the 1st Piola stress) as the

wedge tip is approached have a power law singularity

of the form rm�1 where m ¼ p
2h0

. Our asymptotic

analysis is confirmed by FE calculations. The magni-

tude of these wedge tip fields are controlled by two

loading parameters, a1 and a2, analogous to mixed

mode stress intensity factors in linear elastic fracture

mechanics. Specifically, the ratio a2=a1 measures the

ratio of interfacial shear stress to the transverse stress

(s11) or the ratio of the normal stress to the shear stress

respectively. An interesting result is that the local

deformed shape of the wedge is a straight line with

slope determined by a2=a1. Hence, the wedge in the

reference configuration is mapped to another wedge in

the deformed configuration. A surprising result is that

the leading asymptotic behavior is independent of the

small strain Poisson’s ratio or b, in contrast to small

strain theory (see Fig. 2). Furthermore, for a given

wedge angle h0 2 p=2; pð Þ, the singularity index is

larger than the singularity index predicted by the linear

theory. As a result, the stress singularity predicted by

the nonlinear theory is less severe. Note this is not

always true, for example, for a Mode I crack in a

homogenous neo-Hookean incompressible solid, the

opening component of the true stress directly ahead of

the crack tip has a higher singularity than that

predicted by linear theory (Long and Hui 2015). In

addition, the singular stress fields in the nonlinear

theory have no oscillation. This result is consistent

with Knowles and Sternberg (1983), who show that

the stress field of an interface crack between two

different neo-Hookean sheets does not have infinite

oscillations. For sufficiently low compressibility or

large b, we obtain higher order terms of the asymptotic

series—analogous to William’s expansion in linear

theory.

In contrast to the linear theory, we find no power

law singularity when h0 2 p=4; p=2ð �. Instead, we

found a transition in asymptotic behavior at h0 ¼ p=2.
For a 90-degree wedge, numerical result shows that

the power law singularity of the true stresses is

replaced by a much weaker logarithmic singularity.

Although we cannot provide a rigorous proof that no

singularity exists for h0\p=2; such a singularity, if it

exists, will be extremely weak for these angles. An

interesting result is that the local deformed shape of

the 90� wedge has zero slope [see (66)]. These

departures from LEFM offer important insights into

the limitations of small strain theory; they lead to

better understanding of soft material failure and can

serve as a useful tool aiding the interpretation of

experiments. For example, our theory indicates that

design of fibril tip architecture based on linear elastic

wedge theory is conservative which increases the

safety factor and can lead to more reliable reusable

adhesives.

There are obvious limitations to our theory. Our

asymptotic result is for the Blatz–Ko model. A

difficulty with large deformation theory is that

asymptotic results are constitutive model dependent.

This means that if we use a different compressible

model, the asymptotic result will be different. Fur-

thermore, there is no proof that the limit where b ! 1
in our solution corresponds to a neo-Hookean incom-

pressible solid.
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