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Chapter 1

Introduction

1.1 The earthquake Physics

Two centuries ago Montessus de Ballore had already concluded that
crustal faulting was the basic phenomenon causing earthquakes. However,
it is only in the sixties that a quantitative description in terms of radia-
tion field was enounced by Haskell, who transported the results that had
been developed at the start of the century by the applied mathematicians
to solve engineering problems concerning metals. Comparison with real seis-
mograms, besides allowing accurate radiography of Earth interior, has led
to asymptotic solutions for the single event generation mechanism that are
satisfactory in the low frequency limit. Nevertheless, the Physics of how and
why earthquakes happen remains unknown.

Several processes appear to be potentially important: the state of strain,
local mechanical properties, fault geometry, the role of fluids, propagation
dynamics, triggering by external elastic waves, thermodynamic conditions.
Only the first process was effectively considered in modeling, and mostly in
deterministic way. This prevented from reproducing even the most simple
and universally accepted characteristics of earthquake occurrence, notably
the presence of scaling laws in their distribution, and the trend to clustering
in fore-, after-, and mainshocks.

1.1.1 Statistical models

Recent development of models based on statistical mechanics and com-
puter experiments has inspired new hopes of the feasibility of modeling earth-
quake Physics. These models consider the earth crust as a thermodynamic
ensemble that is always near a phase transition (Self Organized Criticality),
or that stands for a long time near a phase transition when large earthquakes

7



8 CHAPTER 1. INTRODUCTION

occur (Organized Criticality, percolation, etc.). Such models consider single
fault dynamics, fault interactions, and sometimes fault geometry, more real-
istically than the classical ones. Some important dynamic features of seis-
micity may thus be reproduced, but solutions are not unique and the general
contribution to the “understanding” of this phenomenon is still modest. A
plethora of models exists and there is no clear idea on how to chose among
them.

The unavowed hope is to reduce the problem to some simple deterministic
equations with a low number of variables, and to luckily guess their functional
form, following the chimera of low-dimensional deterministic chaos. Anyway,
the latter seems very unlikely, due to the huge number of variables present
in this system.

At the same time, describing a system through statistical mechanics may
be a sound approach at equilibrium or, on stationary systems. Serious doubts
exist about equilibrium in the earth crust. Furthermore, a description in
terms of average quantities appears of modest interest for earthquakes, since
single events are important rather than first integrals.

1.1.2 A poor phenomenology

The real problem seems to be the lack of a clear phenomenology. The bulk
of the experimental data on which models should potentially be validated is
huge and not homogeneous. This data is often based on inferences that
lead to theories essentially in contrast with each other. Their continuous
and frantic appearance is feeding a worrisome state of confusion instead of
leading to some solution.

On the other hand, material rupturing is surely one of the most complicate
problems of Physics, and its variables relative to the Earth crust are generally
not, accessible.

1.1.3 Let’s move to the laboratory

A logical approach seems to analyze the problem moving it into a labo-
ratory environment. This is possible, provided that an efficient design allows
to reproduce in situ the real situation. Up to now, nobody succeeded in this
goal.

The basis of laboratory experiments, meant to accurately reproduce the
basic mechanisms of crustal seismicity, is the ability of starting and propagat-
ing fractures in a stable and controlled fashion. The double torsion loading
configuration seems to be the best approach, and has been universally used
for measuring fracture parameters since early seventies.
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In the Rock Mechanics Laboratory of the Physics Department of the Uni-
versity of Bologna, a sturdy loading machine has been set up, and the skills
necessary to perform experiments on subcritical crack propagation in lava
rock samples have been developed. Fracture parameters were thus deter-

mined for lava rocks coming from Etna, Vulcano, and Stromboli volcanos
(Ttaly).

1.1.4 1Is the method accurate?

All the assumptions of the method have been subjected to a careful ex-
amination and several stages of the measuring process and data analysis have
been optimized with the aim of reducing the traditional variability affecting
all measures of fracture parameters in heterogeneous materials.

The classical model used for the interpretation of the test was also exam-
ined, since it was essentially based on an analytical formulation, the accuracy
of which was indirectly validated in a narrow operational range. We ex-
haustively addressed the problem by developing a detailed three-dimensional
finite-element model to study the effect of several geometric parameters of
the specimen.

This study allowed us to identify and correct some substantial inaccu-
racies in the method, due to the use of the analytical equation. A wide
operational range has been thus defined, in which fracture parameters can
be accurately measured and controlled.
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Chapter 2

Basic fracture mechanics

2.1 Background

Volcanic rocks are mainly present at the surface of the Earth crust. The
values of stress and strain that they are subjected to are rather small and
their temperature is sufficiently low for these rocks to behave in a fragile way
as described by fracture mechanics.

In essence, fracture mechanics concerns the study of stress concentrations
caused by sharp-tipped flaws and the conditions for the propagation of these
flaws. A criterion based on plausible physical grounds or experimental evi-
dence is used to determine whether a crack or discontinuity will propagate
or heal. This is in marked contrast to the historically popular approach in
earthquake research of using simple results from the theory of dislocations in
elastic solids. In this approach the relative motion on the surface of cracks
or discontinuities is assumed a priori. With regard to the analysis of the
stresses and displacements associated with the crack growth or relative dis-
placement on the surface of a discontinuity the two approaches are essentially
coincident.

The analysis of crack problems through fracture mechanics has its roots
in attempts to understand the failure of glass, the stability of metal engi-
neering structures, and, more recently, the fracture properties of engineering
ceramics. Fracture mechanics has grown particularly because of the success
of its relatively simple criteria in describing the failure of these materials.
Introduction to the theory and its application to engineering materials can
be found in Knott [17], Lawn and Wilshaw [19], and Liebowitz [20].

Recent years have seen a dramatic increase in the attention paid to both
experimental fracture mechanics of rocks and the application of fracture me-
chanics to help to solve fracture problems in geophysics.

11



12 CHAPTER 2. BASIC FRACTURE MECHANICS

The explosion of rock fracture mechanics research has touched many di-
verse areas including earthquake mechanics, earthquake prediction, plate tec-
tonics, propagating oceanic rifts, magmatic intrusions and their associated
earthquakes, uplift and erosion of crustal rocks, hydraulic fracturing and in
situ stress determination, hot dry rock geothermal energy extraction, crevasse
penetration and other glaciological problems, the development of steeply dip-
ping extensional fractures that are nearly ubiquitous at the Earth surface and
are formed through folding, upwarping and rifting, fluid transport properties
of fracturing rock masses, and the modeling of time-dependent rock failure.
A detailed bibliography can be found in Atkinson [4].

2.2 Basic concepts

Fracture mechanics largely derives from the now classic papers of Griffith
[13] and Irwin [15] in which the crack as a stress concentrator is accorded
its rightful importance in controlling brittle fracture. Fracture mechanics
provides a quantitative treatment, based on stress analysis, which relates
fracture strength to the applied load and structural geometry of a component
containing defects.

The defect is usually modeled as a crack, but it could be a pore or other
non-linear defect. The influence of applied loads on crack extension can be
described in terms of certain parameters which characterize the stress and
strain intensity near the crack tip.

Fracture mechanics was originally concerned with when the fracture oc-
curs rather than why it occurs.

2.2.1 Crack tip displacement modes

We start with the concept of an ideal flat, perfectly sharp crack of zero
thickness and note that there are three basic modes of crack tip displacement
2.1. These are termed mode I, tensile, mode 11, in-plane shear, and mode III,
out-of-plane shear. In problems concerning crack loading, the superposition
of these three basic modes is sufficient to describe the most general case of
crack tip deformation and stress field.

If we assume Cartesian coordinates (Fig. 2.2) then on the plane y = 0

for mode I: 0, =0 o,#0,=0 7,0 =0
for mode II: 7, #0 o0, =0
for mode III: 7,, #0 0, =0 7., =0
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A
/ / V4
MODE | MODE Il MODE llI
(opening) (in-plane shear) (out-of-plane shear)

Figure 2.1: Schematic drawing illustrating the three fundamental modes of
fracture. Mode I, tensile or opening mode; Mode II, in-plane shear or sliding
mode; Mode III, out-of-plane shear or tearing mode.

: crack y4
opening

Figure 2.2: Coordinates frames for analyses of linear elastic crack tip stress
field. A mode I, tensile crack is shown as an example. The opening of this
crack is exaggerated as the sharp-slit approximation is an integral part of the
linear elastic analysis.
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2.2.2 Stress intensity factor

Stress intensity analysis aims to give a measure of the real forces applied
to a crack tip, which will determine whether it will grow or remain stable.
These cannot be deduced merely from the external loading conditions.

The stress distribution in the crack tip region is analyzed on the assump-
tion that classical linear theory of elasticity applies. This is valid provided
that any region of non-linear behaviour is negligibly small compared with the
length of the crack and the dimensions of the cracked body. It is recognized,
however, that non-elastic effects and non-linear elastic effects are involved
at crack tips in many materials. When these effects become large, fracture
mechanics can deal with them by invoking alternative analyses (see § 2.2.4).

Figure 2.2 shows the stress components in the crack tip stress field. In a
homogeneous, linear elastic medium the stresses near the crack tip are pro-
portional to r~'/2 where r is the distance measured from the crack tip. The
coefficient of the r~'/2 term in the stress is termed the stress intensity factor
and it depends on such factors as the applied load, the shape of the body
and the crack length. The stress intensity factor, K, is thus the magnitude
of the crack tip stress field for a particular mode in a homogeneous linear
elastic material.

Assuming cylindrical coordinates, r, 0, and z shown in Fig. 2.2, linear
elastic stress analysis and an isotropic solid, the stresses close to the crack
tip for mode I loading are given by

K; 0 0 30
= —L cos= 1+ sinz sin= 2.1
o 271'7“0082( +8m28m2> (2.1)
K 0 0 30
o, = \/ﬁ cos; (1 = sm§ sm;) (2.2)

K; 6 6 30 (2.3)
Tay = cos= Sin— coS— :
V2mr 22 2
See [4] for a similar analysis of shear cracks (modes II and III). The K

value for mode I can be further defined as

K, = lim[o,V27r] asr—=>0o0n =0 (2.4)

where o, is the tensile stress normal to the crack surface. Similar definitions
are obtained for the mode II and mode III K values by replacing o, in
equation 2.4 with 7,, and 7,,, respectively. A completely general expression
for the near field stress distribution for any mode is given by Lawn and

Wilshaw [19] as
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Ky
where f;;(0) is a well defined function of # and depends upon the load-
ing mode, and K is the stress intensity factor which embodies the loading
configuration and essential boundary conditions of the crack system. The
subscript L to K denotes the mode of loading, L = I, II, or III. It is common
to simplify stress intensity analysis by assuming that the cracked body has
a two-dimensional stress/strain field at the crack tip that does not change
along the z direction. For a two-dimensional crack in any mode the stress
intensity factor is given by

Oij

K =Yo,\/ra (2.6)
where o, is the remote applied stress, Y is a numerical modification factor
to account for crack geometry, loading conditions, and edge effects, and a for
penny-shaped, internal cracks is half the crack length.

2.2.3 Strain energy release rate

Instead of considering crack tip stresses, an alternative fracture mechanics
approach to crack extension is to examine the strain energy release rate, or
crack extension force, G. Although most contributions to G will come from
the crack tip region, it is a global, rather than a local, parameter and includes
contributions from all parts of the system (cracked specimen plus loading
mechanism). The strain energy release rate is the loss of energy per unit of
new crack separation area formed during an increment of crack extension.
Because G is calculated for infinitesimal increments of new separation area
it can be applied to both stationary and running cracks. Note that strain
energy release rate is a rate with respect to crack length and not with respect
to time.

For fracture in each of the three fundamental modes of crack tip displace-
ment (Fig. 2.1), the crack extension force for plane strain and assuming
linear elasticity is given by

K?(1 —1?
G; = Kil=v) = ) (2.7)
K?,(1 — 12
Gy = % (2.8)
K? K?,(1+v
G[[[ — 117 — II( ) (2.9)

21 E
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where v is Poisson’s ratio, £ is Young’s modulus and p is the shear modulus.
For plane stress the factor (1 — %) in Equations (2.7) and (2.8) is replaced
by unity. For the dynamic stress field of a running crack the proportionality
factor between G and K? is influenced by the crack speed.

2.2.4 J integral

This parameter can be very useful when some sort of non-linear elastic or
inelastic process in the crack tip region makes a significant contribution to
the energetics of fracture. For the crack system shown in 2.2 the .J integral
is defined as

J= /(an — n,;0,;0U;;/0x)ds i,j =1,y (2.10)
T

where o0;;, and u;; are the stress and displacement components, respectively,
and the strain energy density, W is given by

0

s is the arc length and n; are the components of the unit normal to the contour
or path of integration, I', which begins and ends on the crack surfaces and
encloses the crack tip. For linear or non-linear elastic materials which are
homogeneous in the = direction the value of .J is path-independent. Thus,
evaluation of J on a remote contour and on one near the crack tip enables
conditions at the crack tip to be related to parameters describing the applied
loads.

The .J integral can also be determined by an energy rate interpretation
where

J=—-dU/dA =G y = constant (2.12)

where U is the total strain energy of the system, A is the crack surface
area and y is the displacement of the applied force. Thus, J is identical to
the strain energy release rate, (G, in the case of linear elastic stress-strain
behaviour or small scale yielding. It is most widely used, however, for the
characterization of crack tip conditions in the case of large scale yielding.

2.3 Crack extension laws

There are two types of crack extension laws in fracture mechanics.
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Equilibrium laws, which specify that cracks may extend stably or un-
stably at some critical value of a fracture mechanics parameter (K.,
Gw Jc)

Kinetic laws, in which at certain subcritical values of fracture mechanics
parameters a crack can extend at a velocity which is a function of the
magnitude of the crack driving force. The most important example
of kinetic crack growth from the standpoint of geophysics is that due
to chemical interaction between crack tip material and environmental
species (stress-corrosion).

2.3.1 Equilibrium laws

A key concept in the widespread use of fracture mechanics is that exten-
sion of a fracture will occur once a critical value of stress intensity factor, K,
or crack extension force, GG., has been reached or exceeded. There is a vast
literature on the fracture of glass, ceramics and metals to show that this con-
cept has found very widespread practical application in engineering. Once
the critical value of K or GG has been reached, crack propagation is known
as fast or catastrophic fracture because its speed can approach that of sound
in the medium provided that the crack is isolated and its walls are traction
free. If we consider purely tensile loading, G, is related to the Griffith energy
balance concept by

G = 2Q; > 20, (2.13)

where () is the tensile fracture surface energy or global fracture resistance
term. The fracture surface energy is generally greater than the ideal or
thermodynamic surface energy, (2, which in an ideally brittle solid is merely
the work done in separating material across neighbouring atomic planes.
This is because various energy dissipation processes operate at crack tips in
many solids, other than those processes associated purely with new surface
formation. These additional processes include crack tip microplasticity and
acoustic emission, and they are all included in the calculation of the fracture
surface energy.

2.3.2 Kinetic laws

The equilibrium approach to crack extension is not a sufficiently general
view of crack growth during long-term loading, a condition that is of par-
ticular interest in geophysics. It is found in experiments on a wide range of
materials that significant rates of crack growth can occur at values of K or
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G often far below the critical values of these parameters. This is known as
subcritical crack growth. Where chemical weakening of crack tips by environ-
mental species occurs it is known as stress-corrosion. But other mechanisms
can contribute such as dissolution, diffusion, ion exchange and microplas-
ticity. There are numerous kinetic laws for crack extension, all sharing the
common form

v =v(K, G) (2.14)

where v is the crack velocity. The specific form of the crack velocity depen-
dence on K or GG depends on the precise mechanism whereby the energy bar-
rier to crack extension is overcome. Sometimes the form of this dependence
is assumed from experimental results and sometimes from physico-chemical
theories regarding the assumed crack tip weakening process.

It is usually assumed, although rarely measured in experiments, that
crack growth ceases below some small value of G or K termed stress-corrosion
limit, (G,K)o. The detailed form of the v(G, K) curve between (G, K)q
and (G, K). depends on the specific mechanism or mechanisms of subcritical
crack growth. For what concerns rocks, a typical three-stage behavior can
be observed (see Fig. 2.3). Each linear region can be described by the well
known Charles power low [6]:

H
v =uwvpexp| ——— | K" 2.15

oerp ( RT) (2.15)
where H is the activation enthalpy, R is the gas constant, 7" is the absolute
temperature, and vy and n are constants. The exponent 7 is generally known
as the stress corrosion or subcritical crack growth index. In each region crack
growth is governed by different mechanisms [10]:

Region I: for low values of G, K. The velocity of crack growth is con-
trolled by the rate of stress corrosion reactions at the crack tip. The
slope is positive.

Region II': for intermediate values of G, K. The velocity of crack growth
is almost constant since it is limited by the rate of transport of reactive
species to crack tip.

Region III: for large values of GG, K. Crack growth is mainly controlled
by mechanical rupture, following a thermally activated process that is
relatively insensitive to the chemical environment.
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Figure 2.3: Schematic drawing of crack velocity versus crack driving force
(expressed as stress intensity factor, K, or strain energy release rate, G)
behaviour for ceramics, glasses and rocks. Note the bilogarithmic frame.

Subcritical crack growth is not predicted by classical fracture mechanics.
Rice [28] has re-examined the thermodynamics of Griffith-type crack growth,
however, and shown that it is governed by

(G —2Q,)v >0 (2.16)

If G is greater than the surface energy 2Q),, then the crack will grow. If,
on the contrary, G is reduced below 2Q),, then crack healing, negative values
of v, is allowed. This is a particularly important result for the mechanics of
the Earth crust where healing of pre-existing cracks is ubiquitous.
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2.4 Equivalence of fracture mechanics param-
eters

Under conditions of small scale yielding the various fracture mechanics
parameters can be considered as equivalent. For example, in plane-strain
mode I crack propagation

G.=J.=2Q;=K(1-1°)/E (2.17)

It must be emphasized, however, that this equivalence only holds if the
assumption of linear elasticity is valid, i.e. any inelastic or non-linear elastic
region is confined to a negligibly small zone at the crack tip, and there is
no frictional loading on the crack surfaces. Under these circumstances the
several parameters in Eq. (2.17) are termed the fracture toughness and the
material obeys linear elastic fracture mechanics (LEFM). If linear elasticity
is not an adequate representation of crack tip behaviour the relations in Eq.
(2.17) do not hold and the most appropriate single parameter is chosen as a
fracture criterion, e. g. J, in the case of elastic-plastic behaviour.

2.5 Process zone

Classical fracture mechanics deals with a single, ideal atomically sharp
crack. This is a suitable representation for single crystals or at a microscopic
level in polycrystalline materials. In these cases extensive electron optical
studies have supported the assertion that brittle cracks are atomically sharp
and propagate by the sequential rupture of bonds [18]. At a more macroscopic
level of study, however, real polycrystalline, polyphase materials such as
rocks and ceramics, show more complex behaviour. On loading the blunt,
machined notch in Fig. 2.4 a few isolated microcracks are formed, but the
system behaviour remains linear.

On further loading the intensity of microcracking increases and behaviour
in the crack tip region becomes non-linear. Finally, macrocrack extension
occurs because of the linking of microcracks in this non-linear zone, known
as the process zone. The macrocrack propagates by taking with it a cloud of
damage contained in the process zone. In some materials the process zone
may be small with respect to the dimensions of the cracked body and hence a
fracture mechanics analysis assuming linear elasticity will still be valid. If the
process zone size becomes large then non-linear fracture mechanics analyses
are required, such as the J integral. The use of the term process zone is
linked above to the development of crack tip microcracking. In the fracture
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Figure 2.4: Schematic drawings illustrating the development of a process zone
and its influence on macrocrack growth. Simple tensile deformation across
the plane y = 0. Stress increases through drawings A to E. (A) Machined
notch with a few isolated microcracks induced by machining. (B) Microc-
racking begins. Microcracks mostly isolated and linear elastic behaviour is
still observed. (C) Microcracking becomes more intense. Some microcracks
link up. Non-linear behaviour is observed. (D) Within the now fully devel-
oped zone of non- linear elasticity or process zone the macrocrack extends by
linking of microcracks. (E) Further macrocrack extension occurs by migra-
tion of the process zone through the material ahead of the macrocrack tip.
The ’cloud’ of microcracks allows macrocrack extension as described above.
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Figure 2.5: Schematic drawing of a nominal plastic zone, non-linear zone, or
process zone size, 2r,. For simplicity, it is assumed that this zone is circular
in the zy plane, although in practice it will depend upon the stress state.
The drawing shows simple tensile deformation where a stress, 0, acts across
the plane y = 0.

mechanics literature, however, it is given a more general meaning as any zone
of non-linear behaviour at a crack tip. Plasticity, instead of microcracking,
could be the means by which the non-linearity is obtained. For large process
(microcracking or plasticity) zones the material behaves as if it has a slightly
longer macrocrack than is actually measured. K and G determinations can
be extended to include a process zone adjustment in the calculation of an
effective crack length. If the process zone is idealized as circular in the zy
plane (Fig. 2.5) then the adjustment is given by r,, where

1 K?
Ty = ———
Y 2o,

(2.18)

where o, is the yield stress. Equation (2.18) is strictly only valid for the case
of a process zone involving plasticity, but it is often possible to substitute an
effective yield stress for non-plastic materials [30].
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2.6 Evaluation of fracture mechanics param-
eters for specific crack systems

Two distinct methods are used to evaluate fracture mechanics parameters
for specific crack systems: (1) stress analysis, and (2) direct measurement
using compliance calibrations.

In stress analysis the standard approach is to define a suitable stress
function which satisfies the biharmonic equation of linear elasticity theory in
accord with the appropriate boundary conditions. This is a fourth-order dif-
ferential equation embodying the conditions of equilibrium, compatibility of
strains, and Hooke’s law. The components of stress and strain can be deter-
mined from the stress function. For complicated crack systems the analysis is
formidable and simplifying analytical techniques are usually invoked, such as
the sharp slit approximation of cracks, as discussed by Irwin [15], and Lawn
and Wilshaw [19], or the assumption of plane strain or plane stress (for defi-
nitions see Jaeger and Cook [16]). In these analyses K terms are introduced
to embody the essential boundary conditions of the crack systems.

G and J are usually evaluated experimentally by means of compliance
calibrations. Compliance, C', is defined as the displacement of the force
application region, y, divided by the applied force, P. Because the strain
energy release during incremental crack extension is independent of loading
configuration [19]

Gp = 5P = P = constant (2.19)
a
1y? dC

y = i%d_ y = constant (2.20)
a

we have a means of determining (G through measuring compliance as a func-
tion of crack length to obtain dC/da as a function of a. K can be obtained
from Equation (2.17) when this relation is valid. Once a suitable means of
calculating K, GG or J for a specific crack system has been obtained and an
appropriate experimental arrangement has been established, then certain key
conditions need to be satisfied before the experimental determination of the
parameter is valid. This results from embodying numerous simplifications in
the crack analysis. For metals there are certain well defined standards, such
as ASTM E399 [1] and E561. No such standard exists for the experimental
study of fracture in ceramics or rocks. This has hindered the widespread
use of fracture mechanics in geophysics. Various committees of ASTM and
the International Society for Rock Mechanics are working towards such stan-
dards. Limitations to rock fracture mechanics experimental methods are
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discussed by Ouchterlony [22], Atkinson [3] and by Atkinson and Meredith
[4].

2.7 Experimental methods

There exists several specimens that can be used for the measurement of
fracture parameters in rock materials, but currently no standard technique
has yet been defined.

The Commission on Testing Methods of the International Society for
Rock Mechanics (ISRM) is drafting a “Suggested method for determining
fracture toughness of rock material”. The suggested method makes use of
either of the chevron-notched specimens shown in Fig. 2.6, and is limited to
mode I crack propagation only. Details of this technique may be found in
Ouchterlony [24].

No standard technique for fracture toughness testing in modes II and III,
or for subcritical crack growth studies in any mode, either exists or is in an
active state of development [4]. Nevertheless, a wide range of experimental
methods have been used to determine catastrophic crack growth parameters
(K1e, Gre, J1e, Q) for brittle materials in mode I. A comprehensive review
of fracture toughness testing methods for rocks can be found in Ouchterlony
[22], [23].

In contrast, only a few methods have been used to study subcritical crack
growth. In part, this stems from the great difficulty experienced in deter-
mining the position with respect to time of a microcrack tip, especially in
opaque polycrystalline rocks, and hence crack velocity.

The vast majority of subcritical crack growth studies on rocks have used
the Double-Torsion (DT) testing method. The main advantage of this over
other techniques is that crack velocity determinations can be made without
the need for multiple crack length measurements when the crack driving load
is applied in a particular way. The details of this method will be described
in next chapter.

Other specimens that have been used are the Single Edge Notched Beam
(SENB) in bending (Fig. 2.7) and the Double Cantilever Beam (DCB) (Fig.
2.8). The main problem associated with the SENB specimen is that the
loading configuration is unstable for short cracks and inaccurate for long
ones, thus making the relaxation tests inefficients. Moreover, a very stiff
testing machine is needed. The DCB specimen has the advantage of a straight
crack front (as opposed to the complicate curved front of the DT specimen).
A major drawback, however, is that the K calibration is a function of the
crack length, unless the compliances of the specimen and loading system are
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(a)

(b) P

Figure 2.6: Schematic drawings of chevron-notched specimens. (a) Short-rod
specimen. (b) Chevron-notched round bar in bending.
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matched exactly. The suitability of chevron-notched specimens for studying
subcritical crack growth is still being studied.

Ar

Figure 2.7: Singe Edge Notched Beam (SENB) in bending.

Figure 2.8: Double Cantilever Beam (DCB).



Chapter 3

The Double Torsion load
relaxation method

3.1 The specimen geometry and loading con-
figuration

The double-torsion load relaxation (constant displacement) method was
developed by Evans [10] to obtain the velocity of crack propagation versus
the mode I stress intensity factor (SIF).

A typical double-torsion specimen is shown in Fig. 3.1(a). A constant dis-
placement is applied to the specimen through a four point bending scheme. A
notch is machined at one end of the specimen to produce the initiation of the
crack. A side groove performed on the bottom face assures the propagation
of the crack front along the median plane of the specimen.

The advance of the crack has the effect of increasing the specimen com-
pliance. Since a fixed displacement is imposed, this results in a progressive
relaxation of the load. At the same time, the measurement of the load in
time allows one to invert the evolution of the crack length.

The instant value of the SIF can be obtained directly from the load P.
The value of the crack velocity can be obtained by the load relaxation rate.
During a single test, the load is progressively relaxed, so that the whole
characteristic curve can be obtained by putting into relation the values of
K; and v.

The method has various advantages, the main of which is its capability to
produce stable crack propagation, which makes it very convenient for study-
ing fracture in brittle materials like rocks [4]. Thanks to this stability, more
tests are possible on the same specimen. Another advantage of the method
is that it only requires one to monitor the decrease of the load with time to

27
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Figure 3.1: Sketch of a double torsion specimen: (a) general view, (b) axial
cross section, (c¢) longitudinal cross-section (modified after Atkinson [2]).

measure both the stress intensity factor and the crack velocity, without any
need to measure the crack length during the experiment.

3.2 Evans’ model

The DT specimen can be considered as two elastic torsion bars, each
having a rectangular cross-section and a length equal to the crack length a,
loaded as indicated in Fig. 3.2 to a load of P/2. It has been shown [33] that
for small deflections, y, the torsional strain angle, 6, is given by



3.2. EVANS’ MODEL 29

W/2

Figure 3.2: The DT specimen can be considered as two elastic torsion bars,
each having a rectangular cross-section and a length equal to the crack
length a.

alP
nw,Wd3pu
where w,, is the moment arm of the torsion, W the specimen width, d the
specimen thickness, p the shear modulus, and = 1/3 for W > d (thin

specimens). As W/d decreases, n decreases as described by Timoshenko [33].
The specimen elastic compliance, C, is then given by

0=~ y/w, ~ (3.1)

2
y w: a
C===—=r- 3.2
P ngWddu (3:2)
The strain energy release rate for crack extension, G, is related to the
specimen compliance by the expression [14]

dU P2dcC

where U is the elastic strain energy, and A is the area of the crack. If
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the shape of the crack front is independent of crack length (see § 5.2.4)
then dA = d,da, where d, is the thickness in the plane of the crack. By
differentiating Eq. (3.2) with respect to a and substituting into Eq. (3.3) we
obtain

_ P2dC wlP?

G =50 da ~ aWddon

(3.4)

3.3 Stress intensity factor and crack velocity

For plane stress, the mode I stress intensity factor, K7, is related to G by

E
K = VEG = Pwmy| ———— .
! G = Pon\ S (3:5)

Since the Young’s modulus E and the shear modulus p are related by

e (3.
=50+ 0) ’
where v is the Poisson’s ratio, Eq. (3.5) reduces to
(1+v)
K = Pupg| —— 3.7
1= e\ Wk, (3:7)

The SIF is thus a function of the applied load, specimen dimensions, and
Poisson’s ratio only. It‘s independence of the crack length makes the DT
specimen extremely useful.

Since this model is based on the assumption that the specimen can be
treated as two independent torsion bars, and therefore that the uncracked
portion of the specimen remains substantially undeformed, the validity of
these equation is limited to relatively large crack lengths. The validity of the
model was tested experimentally by Williams and Evans [36] performing a
compliance calibration on a specimen and comparing the empirical relation-
ship with that which would result from the analytical expression (Eq. (3.2)).
Figure 3.3 shows a set of experimental compliance data for a steel specimen
with the dimensions indicated. The data fits very well a linear relation

C=y/P=Ba+D (3.8)

but the intercept D is generally different from zero, probably due to the end
effect of short crack lengths. Differentiating Eq. (3.8) as a function of time
at constant displacement gives
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Figure 3.3: Experimental compliance calibration on steel specimens (modi-
fied after [36]).

da Ba+D (dP
_ il 3.9
(dt)u BP (dt)y (3.9)

From Eq. (3.8) it can be seen that, for constant displacement

P(Ba+ D) = Py(Ba; + D) = P;(Bas + D) (3.10)

where P; and q; are the initial values of load and crack length, and P and
ay are the corresponding values at the completion of relaxation. Solving for
(Ba + D) and substituting in Eq. (3.9) gives

() =~ Fhows+orm () B.11)




32 CHAPTER 3. THE DT LOAD RELAXATION METHOD

In general, except for very low modulus materials (such as polymers) or
for small crack length, D/B < a;, so that

da Pifaif dP
) = sl 3.12
(dt)y P? (dt )U (3.12)

The crack growth rate at each load can thus be found from the rate of
load relaxation, if the crack length at the onset or completion of relaxation
is also measured.

3.3.1 Inclination of the crack front

It should be noted that the crack front is not flat for this type of specimen
(see Fig. 3.1(c)), so that the crack has a different extension on the two faces
of the specimen. The term “crack length” used herein refers to the longest
portion of the crack, that is, the length at the lower (opening) face of the
specimen. Moreover, the length of the crack is measured starting from the
position of the loading points.

UPPER FACE
577\ “\—\S\ >
AX T~ —
5 . =~
\CRACK LOWER FACE

Figure 3.4: The effective direction of propagation of the crack is normal to
its front.

The difference Aa in crack extension between the upper and lower faces
of the specimen has been empirically found to be fixed and equal to five times
the thickness d,, in the plane of the crack for glass and alumina [10].

The effective direction of propagation of the crack is normal to its front.
The inclination of the crack front implies that the crack velocity is not given
directly by da/dt (see Fig. 3.4), but it should be reduced about a factor ¢
[10] approximately given by

¢~ dp/\/Aa? + d2 (3.13)
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The crack velocity v is then given by

1 dP

0= =0y
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(3.14)
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Chapter 4

Experiments on lava rocks

4.1 Test material

Our specimens were cut from samples of volcanic rocks extracted from the
Mount Etna, Sicily, 1981 flank eruption, from the Punta dello Scoglitto lava
flow, from the Fossa latitic eruption, from the Lentia rhyolitic dome, all at
Vulcano, Aeolian Islands, and from the shoshonitic basaltic eruption at the
Filo del Fuoco in Stromboli, Aeolian Islands. The rocks from Vulcano and
Stromboli are all dated between 113,000 years b.p. and the historical epoch
(Calanchi et al. [5]). Petrographic analysis shows a homogeneous vesicular
porphyritic structure in most of the samples, allowing us to assume isotropic
mechanical properties. The porosity is determined by sub-spherical pores
of variable dimensions ranging from fractions of a mm to a few mm. The
chemical composition of each type of rock is determined by XRF analysis;
the percentages of the main oxides are reported in Table 4.1. The lithotypes
are displayed on a TAS diagram (Total-Alkali-Silica) in Fig. 4.1.

4.2 Optimizing the experimental technique

We attempted to achieve a better accuracy in measuring the fracture
parameters by optimizing several experimental aspects. These were

e A very sturdy machine, run at a small fraction of its load capability.
e Careful specimen preparation, which included low tolerance machining.

e Tight control of the experimental conditions (temperature and humid-
ity).

35
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SpeC. SZOQ TZOQ AlgOg F€203 MnO MgO CaO NCLQO KQO P205 LOI
% % % % % % % % % % %
V1 54.13 | 0.60 | 17.22 8.12 0.16 3.20 | 7.20 5.14 | 3.73 | 0.49 | 0.79
V2 | 59.71 | 047 | 1742 | 6.13 0.13 | 1.87 | 454 | 4.17 | 5.03 | 0.33 | 5.29
V3 70.74 | 0.22 | 14.21 3.32 0.08 | 0.66 | 2.15 3.87 | 4.62 | 0.11 | 0.53
V4 | 5819 | 0.60 | 1872 | 7.06 0.11 1.37 | 3.70 | 4.05 | 5.74 | 0.46 | 1.59
S1 51.11 | 0.86 | 18.49 | 8.64 0.17 | 4.81 | 1051 | 2.82 | 2.17 | 0.42 | 0.1
E1 47.88 | 1.58 | 17.74 | 3.29 0.19 | 4.73 |10.36 | 4.69 | 1.53 | 0.42 | 0.75

Table 4.1: Percentage of major oxides in the specimens (from XRF analysis)
normalized to 100 and LOI percentage (Lost Oxides Index). The content
of FeO was zero for all rocks except E1, for which it was 6.83 %. The
different lithotypes analyzed are relative to the Mount Etna, Sicily, 1981 flank
eruption (E1), to the Punta dello Scoglitto lava flow (V1), to the Fossa latitic
eruption (V2 and V4), to the Lentia rhyolitic dome (V3), all at Vulcano,
Aeolian Islands, and to the shoshonitic basaltic rocks at the Filo del Fuoco
in Stromboli (S1), Aeolian Islands. The rocks from Vulcano and Stromboli
are all dated between 113,000 years b.p. and the historical epoch.

e High resolution digital electronics and data processing, which also al-
lowed an improved accuracy in the measured elastic parameters.

e An optical check of the prefracture length.

4.2.1 The loading machine

The machine we used to apply the load is functionally similar to the

widely used Instron testing machine and consists essentially of a servo-controlled

electric motor which, through a cascade of worm gears, can apply a given
displacement to a specimen, while measuring the applied load by a load cell
mounted in series with the specimen. Our machine (see Fig. 4.2) is custom
designed and built to maximize stiffness, with a solid stainless steel frame
25.4 mm thick. It was designed for a nominal working load of 20000 N and,
to further guard against frame deformation, it was always used at loads less
than 1500 N. Specimens may be up to 20 mm thick and up to 200 mm wide.

4.2.2 Specimen preparation

Specimens for double torsion testing were machined using a precision
diamond head into slabs about 200 mm long, 70 mm wide, and with a set of
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Figure 4.1: TAS diagram (Total-Alkali-Silica) for all the lithotypes analyzed.
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Figure 4.2: A photograph of the loading machine.



4.2. OPTIMIZING THE EXPERIMENTAL TECHNIQUE 39

different thickness values ranging between 4.7 mm and 9.4 mm. A 1 mm wide
groove with a depth equal to 1/3 the specimen thickness was also machined
along one of the faces along with a 10 mm long, 1 mm wide edge notch
to guarantee a rectilinear propagation of the fractures. The tolerance was
always kept within 0.4 mm. We used width to thickness ratios between 8:1
and 15:1, at which Eq. (3.7) is well applicable with the use of the appropriate
values for 7 (see § 5.2.1).

4.2.3 Control of the experimental conditions

Since tiny deformations in the frame of a stiff loading machine can greatly
affect the applied load, it is essential that temperature be kept as constant as
possible. We used a heat pump and an electronic differential thermostat to
keep temperature variations within 1°C' in a dedicated room. The variations
of humidity, which does not affect the loading machine, but which can affect
the fracture properties of the rock, were kept within 10 %.

4.2.4 High resolution electronics

The high resolution achievable through up-to-date electronic devices was
beneficial to two different experimental steps. First, the output of the load
cell was fed into an analog—digital converter, digitally amplified, and sent
via a serial port to a computer workstation where it was recorded, to guar-
antee the acquisition of massive data sets. Second, since Eq. (3.7) requires
the knowledge of the Poisson’s ratio v, we developed a procedure that used
isotropic elastic wave velocities to measure v:

[(52)? - 2]

o) -1

(4.1)

Essentially, we used the standard time-of-flight measurement for pulse
trains of P and S waves between a sensor and an emitter placed at given po-
sitions on the specimen. Step functions with exponential fall were generated
by a function generator, pulsed at frequencies varying from 10 Hz to 1 kHz,
and injected into the specimen as elastic waves by means of a custom-built
piezoelectric transducer, checking in all cases that the frequency value was
far from the resonance of the specimen. Time stacking of the recorded signal
was then used together with an averaging over 1000 pulses. This allowed an
improvement in the signal to noise ratio of approximately 20 db.

For each specimen the wave velocities were calculated twice for seven
different configurations of the transmitter and receiver, which were glued to
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Specimen | Vy(km/s) | Vi(km/s) v Kr.
I, - 111, | I,- 111, (MNm~=3/2)
V1 1.44 - 1.78 | 0.88 — 1.04 | 0.24 0.445
V2 3.06 - 3.16 | 1.80 — 2.13 | 0.17 1.006
V3 3.48 -3.62 (192 -226|0.24 1.248
V4 230-2531.26-1.69 | 0.26 0.165
S1 1.86 —-2.06 | 1.21 - 1.39 | 0.11 0.227
El 3.31-343|189-2.15|0.21 1.763

Table 4.2: The scatter in the P and S wave velocities in each specimen for
all directions of propagation is given by the I and III quartile values. The
median value of the Poisson’s ratio v is given in the third column. The last
column shows the corresponding fracture toughness Ky, value. The different
lithotypes are given in the caption of Table 4.1.

the specimen by using cyanoacrilate compounds to ensure good mechanical
coupling. The internal scatter of each P and S wave velocity measurement
was within a few percent, and also the variation for the different travel paths
was limited to about 10 % for P waves and 20 % for S waves. This indicated
a fairly modest anisotropy, which made it possible to apply the isotropic
approximation, implemented by taking the median value for each sample.
The scatter on the measurements is given by the I and III quartile values of
the velocities measured in all directions, which are shown in Table 4.2 along
with the median Poisson’s ratio. A detailed report of the measures can be
found in the graduate thesis of Nicola Negri [21] and Lorena Sassi [29].

4.2.5 Optical check of the prefracture length

In order to employ equations (3.7) and (3.14) it is necessary to create an
initial fracture of known length in the specimen. The traditional approach
consists, first of all, of cutting a notch of given length along its major axis (see
Fig. 3.1a, 3.1b). Since this cut will have a blunt end, while it is necessary to
have a sharp fracture, the specimen is loaded at the lowest possible constant
strain rate and the load is closely monitored. As soon as a decrease in load is
observed, loading is immediately stopped. A typical prefracture load-versus—
time curve is shown in Fig. 4.3. It clearly shows the loading at constant
rate, followed by a knee. The drop in load is interpreted as the initiation of
a fracture, which is nevertheless classically assumed to have propagated for
such a short length that it can be disregarded. In light of this, the length of
the initial fracture is classically taken to be that of the notch. We checked
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Figure 4.3: The load curve in a typical pre-fracture run. The fracture is
initiated at ~220 seconds when a load drop occurs.

this by observing the presence of a fracture in the groove (opening side) with
an optical stereo microscope. We have in most cases found that a fracture
can be quite easily observed and that its length (generally a few centimeters)
can never be disregarded. In general, we were also able to observe the final
length of the fracture after a relaxation run and this value was cross-checked
with the initial one using the constant displacement condition (Eq. 3.10).

The apparatus proved to be very stable so that several relaxation runs
could sometimes be performed on the same specimen.

4.2.6 Determination of fracture toughness K.

All the measurements of the critical load P, were performed on pre—
fractured specimens. One or more specimens for each lithotype were loaded
at the highest possible rate until they broke and the relative K;. was then
calculated through Eq. (3.7) (the median value for each lithotype is reported
in Table 4.2). The loading curves have a general aspect as in Fig. 4.4,



42 CHAPTER 4. EXPERIMENTS ON LAVA ROCKS

700 T T T T T

600 J ]

500 - b

2001 e J

100 - h

!
5 10 15 20 25 30 35
Time (s)

Figure 4.4: The general aspect of a critical loading curve consists of a sharp
rise of the load followed by an instant drop consequent to the specimen
failure.

showing that no significant relaxation takes place before the failure. At this
point the load relaxation procedure was ready to start.

4.2.7 Load relaxation tests

A specimen was loaded at the highest possible rate up to 90-95 % of the
load relative to K., the machine was stopped and the load relaxation with
time was recorded.

Load was sampled at 10 Hz for the whole run, which typically lasted 10
hours. Only the initial part of load relaxation was actually used (=~ 1000 s),
though, due to the load fluctuations induced by temperature in spite of its
tight control, which are apparent when the relaxation rate becomes slow (see
Fig. 4.5 and the discussion below).
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Figure 4.5: A typical load relaxation curve. The load fluctuations induced
by periodic temperature variations are clearly apparent.
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Figure 4.6: The initial part of the load relaxation curves, which were used
in the analysis, each one normalized to the maximum load Pmax reached in
the run. The label numbers are the same as in Table 4.3.

4.3 Results

Sixty-five specimens were cut from a total of 70 kg of lava rocks. A
fraction of them had to be discarded because they contained void inclusions
large enough to prevent effective measurements. Another fraction acciden-
tally broke during the machining. A further fraction had to be discarded for
an insufficient number of samples of identical lithotype.

We measured 6 different lithotypes, respectively one coming from Mount
Etna volcano, four from Vulcano and one from Stromboli. In spite of the
tight control of the environment conditions, the load fluctuation induced
by the near periodical temperature variation due to the thermoregulation
cycle was generally large (see Fig. 4.5). We could thus only measure the
initial part of the relaxation curve, in which the relaxation rates are high and
the load fluctuations induced by temperature variations are comparatively
small. Each relaxation curve was therefore analyzed only in the interval
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Figure 4.7: Region III of the subcritical crack growth curves (K; — v). The
stress intensity factor is normalized to the critical value of each lithotype.
Notice the coherence and linearity in the slope. The horizontal separation is
due to the different values of K;c and is related to the different lithotypes.

preceding the first evident effect of temperature fluctuations (Fig. 4.6). As a
consequence, we could not measure the whole subcritical K;—wv curve relative
to mode I fracture propagation, but only its region III, which regards the
highest velocities of propagation. This is actually the most important one for
modeling purposes, since it immediately precedes catastrophic propagation.
The dependence of v on K; in region III is well approximated by a power
law:

v=AK} (4.2)

where A is a constant and n is the subcritical crack growth index. The
experimental results are reported in Fig. 4.7.

The measured velocities of propagation were in the range 10~7 to 10~*
m/s, in which a log-linear relation was found to provide a very good fit to
the data (r? > 0.90 in all cases). Since theoretical considerations yield that
these slopes remain constant up to the critical value of the stress intensity
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Specimen | n
1 Vi-sl 25.4
2 | V2-sl-rl | 49.3
3 | V2-sl-r2 | 61.5
4 | V2-sl-r3 | 47.2
5 V2-s2 36.5
6 V3-s1 125
7 V4-s1 22.6
8 S1-s1 92.1
9 El-sl 43.1
10 E1-s2 45.9

Table 4.3: The experimental log exponents of the velocity of fracture prop-
agation versus stress intensity factors in the region III of the mode I sub-
critical fracture propagation, for the lithotypes we considered. The different
lithotypes are given in the caption of Table 4.1. Letter ‘s’ denote different
specimens of the same lithotype. Letter ‘v’ denote different relaxation tests
on the same specimen.

factor [4], it is possible to calculate the evolution of fracture propagation
from velocities of 1077 m/s to catastrophic propagation. The values of the
subcritical fracture propagation index n for each lithotype are given in Table
4.3. Particularly important is the case of the Etna (E1) and Vulcano (V2)
lithotypes, for which several independent relaxation runs could be performed,
respectively 2 for E1 and 4 for V2. A good coherence was found, with
repeatability of the measurement of the region III fracture slope within 20%.



Chapter 5

Critical analysis of Evans’
model

5.1 Variability in the estimates

Although the Double-Torsion load relaxation method has been almost the
sole method used to study subcritical cracking in the last thirty years, the
measurements of the K; — v curves are unavoidably marred by considerable
scatter [3], [32].

Swanson [32] has shown that for a given specimen geometry values of the
stress corrosion index n are repeatable to a degree, but that there exist rather
large differences in the mean values of n determined for the same material in
different laboratories. These differences can not be attributed to variations
in the material. Furthermore, the placement of the K; — v curves on the
stress-intensity axis is not fully repeatable using the load relaxation method,
i.e., there is a low precision in the preexponential constant in Eq. (2.15).

Some reasons for this variability are the heterogeneity of the rock samples,
the sensitivity to environmental conditions, and the difficulty and cost of
preparing specimens with low geometrical tolerances.

There has been a considerable recent discussion in the literature regard-
ing the constraints on the validity of the double torsion method. Various
factors have been identified as possible sources of errors and uncertainties in
DT data, and assumptions of the method have been found not to be satis-
fied in certain specimen geometries. The following sections report the main
observations and conclusions on this subject. Some progress has been made
in the comprehension of the limitations of the DT method. Nevertheless
much remains to be understood before the DT method can be assumed as
an accurate standard for studying subcritical cracking.
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Wid| r t n 3n
2 1 1 0.1406 | 0.4217
8/3 | 4/3 | 3/4 | 0.1805 | 0.5414
4 2 1/2 | 0.2287 | 0.6860
6 3 1/3 | 0.2633 | 0.7900
8 4 1/4 |0.2808 | 0.8424
10 5 1/5 | 0.2913 | 0.8740
12 6 1/6 | 0.2983 | 0.8950
16 8 1/8 | 0.3071 | 0.9212
24 12 | 1/12 | 0.3158 | 0.9475
40 20 | 1/20 | 0.3228 | 0.9685

Table 5.1: Corrective factors 7 for a finite thickness DT specimen as a func-
tion of the thickness ratio, which is sometimes indicated as r = W/2d or
t=2d/W.

5.2 Known drawbacks of Evans’ formulation

Let us recall here the basic hypothesis that lay below the classical Evans’
model: the DT specimen is considered as a symmetrical system of two inde-
pendent thin plates, each of which subjected to simple torsion, with length
equal to the crack length. The part of the specimen beyond the fracture tip is
considered undeformed. The compression induced by torsion at the contact
zone of the two plates on the upper face (see Fig. 3.1) is ignored. Moreover,
the presence of the side groove, the effect of its shape, and the presence of the
initial notch are ignored as well. Finally, the effect of the inclination of the
crack front is only taken into account for what concerns the crack velocity,
but not for the strain energy release rate.

5.2.1 Thick specimens

In Egs. 3.1 to 3.7, Evans [10] assumed the use of n = 1/3 in the limit of
thin specimens (W/d > 12). The original equation for the simple torsion of
a plate with a finite thickness was derived analytically by Timoshenko [33],
and its transfer to the DT specimen was reviewed by Fuller [12]. The factor
n was given as a tabled function of the thickness ratio W/d (see Table 5.1).

For W > 2d (that is, a square beam cross section), a simplified expression
which is accurate to better than 0.1% was provided by Fuller [12]

1
ne o - 0.21010 4+ 0.4te "/t (5.1)
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For independent beams in torsion, Eq. (3.2) is an exact expression for
the compliance with the correction for finite thickness beams given by the
coefficient n(t). For the DT configuration, however, the contact stresses
resulting from the overlap of the two beams depend on the beam thickness.
Accordingly, the correction for finite thickness given by Eq. (5.1) may not
be the most important correction for thicker specimens [12].

Some experimental tests performed by Evans [11] showed that use of Eq.
(3.7) with the proper value of 1, underestimated K. for specimens with a
thickness ratio of ¢ ~ 1/4, but was in agreement with other measurements
of K;, when t was higher then 1/6 (WW/d > 12). It is probably due to this
effect that Evans decided to use thin specimens.

5.2.2 Plane-strain vs. plane-stress

Eq. (3.7) was obtained under plane-stress assumptions, but the effective
deformation condition at the neighboring of the crack is unknown, since the
crack profile is curved and three-dimensional. Some authors assume plane-
strain conditions [26], so that the mode I SIF would be:

1
K; = Pw,, 2
! v \/7)(1 —vyWd3d, (5:2)

When the process zone size is small compared with the specimen thickness
or z dimension (Fig. 2.2) the crack stress field in the central portion of the
crack front is nearly plane-strain because of the constraining effect of the
crack tip. If the z direction or specimen thickness is small compared to the
non-linear zone, then the plane-strain constraint of the crack tip zone is also
small and plane-stress analysis is more appropriate [4].

If the minimum thickness of 2.5(K;./0,)?, where o, is the yield strength,
that is recommended by the ASTM Test for Plane-Strain Fracture Toughness
in Metallic Materials (E399), is appropriate for these brittle materials, then
most measured values have probably been plane-strain fracture toughness
[12]. The choice between these two assumptions remains an open question,
and may not even be an appropriate question to ask.

5.2.3 Crack tip displacement mode

Another objection that has frequently been raised about the DT config-
uration is the appropriateness of describing the mode of failure as mode I
[12]. However, this can be the only mode of crack deformation in an “ideal”
DT specimen, since the loading configuration and the specimen geometry are
symmetrical about the crack plane. In support of this proposition Evans and
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Figure 5.1: Successive positions of the crack front in DT specimen dur-
ing subcritical crack propagation. Velocity at P is given by v(P) =
limagoAr(P)/At.

co-workers [10], [36] observe that measured values of K. appear to agree with
mode I values as given by Eq. (3.7), although they indicate that this could
be a consequence of the relatively large values of K, and Kyj;. compared
to K. for most materials.

5.2.4 Crack front shape

As it was observed in many previous studies on subcritical crack growth,
the crack front in a DT specimen is curved (see Fig. 3.1) [10], [36]. It
has also been reported that the shape of the crack front is independent of
crack length (i.e. remains unaltered during crack propagation) for a constant
stress-intensity factor and that the shape is different for different materials.

Virkar and Gordon [35] have shown that the shape of the crack front
profile is dependent on the characteristics of subcritical crack growth in any
given material in any given environment.

Let us consider successive positions of the curved crack front, as in Fig.
5.1. Since the local direction of crack propagation is orthogonal to the crack
front, it is readily apparent that the crack velocity v varies all along the crack
front, the highest velocities being at the lower face.

Since v is related to K via a relation in the form v = AK™, this implies
that K is also a function of the position along the crack front. Since the
stress-corrosion index n is generally large for brittle rocks, small variations
in K produce large variations in v. The crack front shape was shown to
depend on the value of n [35], so that the crack profile will meet the upper
face more gradually in materials exhibiting large n values.

As a consequence, if the plot of v vs. K is not linear on a log-log scale,
i.e. m is not constant, the shape of the crack front will continuously change
during a load relaxation test, making the average estimation of v inaccurate.

This problem was addressed by Pollet and Burns [27] who derived a better
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averaging process for the crack velocity along the front.

The experimentally measured quantities during DT testing are the ap-
parent crack velocity, a, and the average strain energy release rate, G, (a)
obtained from a global strain energy analysis.

3

If we assume that, at least over a range of crack velocities encompassing

those experienced by the crack elements, the v(G) relation can be described
by

v =1vy(G — Go)" (5.3)

it can be demonstrated that the average value of G, G,, is related to the
apparent crack velocity by

o= (50) (G — Go)" (5.4)

where the coefficient ¢ is given by

= (;—n /Odn sina(z, d)l/"dx>n (5.5)

Pollet and Burns observed that crack profiles, and consequently ¢, were
almost independent of @ in polymetil metacrylate (PMMA). Equation (5.4)
has the same form of Eq. (5.3), with the same constant Gy and same exponent
n. Consequently, with the preceding restrictions DT data provides the correct
value of the stress-corrosion index n. Comparing Eqs. (5.4) and (5.3) then
provides the relation

v(G) = ¢a(Ga) (5.6)

that is, the same as in Evans’ method, but with a new determination of ¢.
When the crack-front geometry is approximated by a straight line, sina(zx, a)
is a constant, and ¢ = sinag is then equal to the first-order geometrical
correction proposed by Evans [10].

Moreover, Pollet and Burns showed that ¢ does not vary significantly
with n, for n > 4. Thus ¢ can be accurately obtained even if n is not known
precisely.

5.2.5 Side groove

The presence of the side groove is intended to guide the crack propagation
along a straight line in the midplane, thus allowing the suppression of the
effects from inaccurate dimensioning or inhomogeneities in the structure.
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However, the presence of the groove is not accounted for in Evans’ model for
the specimen deformation, whereas the width and the depth of the groove
and the shape of its tip could influence the determination of K.

To investigate on the effect of the groove, some DT tests were performed
by Pabst and Weick [25] on commercial Al,O3 material using the constant
load technique. The main results are that the presence of a groove introduces
a substantial scatter in the estimates of the stress corrosion index n. Such a
scatter was larger for the larger groove with a square shaped geometry than
for the thinner one with rounded geometry. Larger values of n were also
apparent when the larger groove was used, but the evidence was very weak
due to the large scatter and to lack of data. Moreover, some determinations
of fracture toughness, Ko, showed that the estimated values increase with
groove width.

Atkinson [3] observed that a possible explanation of the larger scatter
and fracture toughness could be the interaction between crack tip and guide
groove walls. If the side groove is very narrow, the crack is constrained to
follow a relatively straight path. A larger groove would allow the crack to
wander, choosing the lowest energy path (eventually changing from trans-
granular to intergranular). For intermediate groove width the crack reaches
the groove walls and it is sharply deflected towards the midplane. For larger
width the crack is deviated more gently before reaching the groove walls.
Furthermore, apparent crack velocity is decreased by the roughening of the
crack path.

The conclusion seems to be that the groove should be omitted when
possible. It is impractical, however, to eliminate side grooves in such hetero-
geneous materials as rocks.

5.2.6 Operational range of crack length

One of the main advantages of the DT specimen is that the relation
between the SIF and the measured load appears to be independent of the
crack length, and therefore constant along the test.

Actually this property was assessed to be valid only for sufficiently long
cracks and ligament lengths (L — a) [10], [36].

A finite-element study performed by Trantina [34] and some experimental
DT tests performed by Shetty and Virkar [31] showed that Eq. (3.7) for the
SIF overestimates K for short cracks, and underestimates it for long ones.
The two studies determined an operational range for the crack length in
which Eq. (3.7) is accurate within 5%. Grossly, the distance of the crack tip
from both ends of the specimen should be larger than the specimen width
W (for the details see section §7.4).
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These misestimates derive from a deviation from linearity of the compli-
ance when the crack is near the ends of the specimen. For very short cracks
the deformation of the plate beyond the crack is no more little compared to
the torsion of the two beams. For long cracks the plate beyond the crack
becomes rapidly shorter, thus increasing the effect of its compliance.

5.2.7 Length to width ratio

The considerations in the previous section suggest that long specimens
should be used with a length to width ratio at least larger than 2.

Furthermore, estimates of the stress corrosion index reported by Atkinson
[3] for Westerly granite and Ralston basalt using specimens with L/ ~
2 — 2.5 were on average 50% lower that the ones obtained by Swanson [32]
on samples cut from the same blocks with L/ ~ 6.

On the other hand, the measures of Pabst and Weick [25] on Aly,O3 ma-
terial showed the opposite trend, but these measure were obtained using the
constant load method rather than by load relaxation, so that the final effect
on n could be different.
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Chapter 6

Finite-element study of the
Double Torsion specimen

6.1 The finite-element model

As we have observed, a substantial part of the scatter among different
measurements is due to Evans’ model not describing the effective deformation
of a realistic DT specimen with sufficient accuracy.

For this reason, we decided to perform an accurate, three-dimensional
finite-element analysis of a realistic specimen: that is, one with finite thick-
ness, a groove, and an initial notch. The aim of the study was to estimate
the influence on the strain energy release rate, G, of the specimen width
and length, the fracture length, the presence and shape of the side groove,
the presence of the initial notch, and the curved shape of the fracture front.
Furthermore, no constraint on the state of strain of the crack tip should be
assumed.

This type of approach was explored earlier by Trantina [34]. His results
were interesting but not very useful in practice, because his study of 176
linear elements produced just five values of GG, for a specific specimen with
no side groove and no initial notch. Furthermore, his use of linear elements
prevented him from obtaining a crack front with a realistic inclination.

6.1.1 Choice of the Physical quantity G

Evans’ equation (3.7) is based on the computation of the strain energy re-
lease rate (SERR) by derivation of the compliance of the DT specimen. Then,
he uses the plane-stress relationship K; = v/ IV - G to obtain the mode I stress
intensity factor. Because the plane-stress assumption and the exact fracture
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modality are, so far, not well understood in the DT loading configuration,
direct measurement, of the SERR in the finite-element simulation seems best
for studying Evans’ equation. The idea is to measure the difference, 6U, in
total strain energy for two meshes with a little difference, da, in crack length
and to normalize 6U to the difference in the crack area. Thus,

—c) o

Consequently, the mesh does not have to be very fine, because an ex-
tremely accurate representation of the deformation field around the crack tip
is necessary only if the crack-surface displacement approach is used.

6.1.2 Finite-element code and computing resources

The present meshes were designed using a graphic editor (Mentat 3.2,
produced by MARC Corporate, Palo Alto, USA) and analyzed using a par-
allel code (Marc K7.3, also produced by MARC Corporate). The solution
process was very laborious, but it was made feasible by access to the power-
ful resources of the CINECA computing center (Consorzio Interuniversitario
Nord-Est Calcolo Automatico, Bologna, Italy) and, in particular, a super-
computer (Model Origin™ 2000, produced by SGIT™, USA) with 16 parallel
CPUs (MIPS R10K 195 MHz), 8 gigabyte RAM, and a peak performance of
6.24 gigaflops. The operating system used was SGI™™ Cellular IRIX 6.5.5.
Because this supercomputer used ~ 5 CPU minutes to solve a model, the
present study analyzed 1800 models in 150 CPU hours, obtaining 600 values
of G that explored combinations of several different parameters.

6.1.3 Mesh design

The finite-element model is designed to represent a DT specimen in the
constant displacement configuration. Because the model is symmetrical, the
mesh describes only one half of the specimen (see Fig. 6.1). The model is
made of ~ 500 brick elements disposed in five slices, one of which is partially
removed to simulate the presence of the side groove. The elements at the
beginning of the groove are moved back to simulate the initial notch. The
refined subdivision of the elements in the first row allows the positioning of
the loading points (four-point bending).

The most sophisticated part of the design is the region surrounding the
crack. The most common solution for representing cracks is to design a
spider-web mesh around the crack front, with quarter-point nodes on the
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THE FINITE-ELEMENT MODEL

6.1.

Figure 6.1: Finite-element mesh. The model represents one half of the DT
specimen. The remaining part is replaced by symmetrical conditions and

The side groove and initial

by a contact surface in the failed interface.
notch are reproduced. The crack front is designed by hand to reproduce the

experimental shape.
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first shell of elements. This solution allows for a better adaptation to the
physical behavior of the strain field near the crack tip and was validated
against the predictions of the analytical solution for the double cantilever
beam [34].

Trantina [34] also used this spider-web mesh for the DT loading config-
uration, introducing a weak inclination of the fracture front. Because the
strain field near the curved crack tip of the DT specimen was not known in
detail, Trantina removed the inner shell of elements near the crack tip. In
contrast, the present study involved first testing the elements with quarter-
point nodes and then the normal elements; an attempt also was made to
remove the inner shell. Because all of the variations in GG generally were
< 1% (with better consistency between quarter-point and normal elements),
the simpler normal elements were used here. The radius of the inner shell of
nodes is R = 1.6 mm (R/d ~ 0.23).

The geometry of the inclined spider web was matched carefully with the
presence of the groove, and the internal position of each node was optimized,
with the aim of reaching the maximum curved-front inclination allowed by
the deformation limits of the elements (the graphic mesh editor Mentat has
an internal element-check function that highlights elements whose distortion
is above a threshold value).

For the low strain used in the present model, and assuming the use of
second order elements, the code indicated a threshold value of 0.95. In regard
to the distortion, this value indicated that the internal angles of each element
could not decrease to <10°. In regard to the aspect ratio (the ratio between
the surface and the volume of an element), the 0.95 threshold value meant
that the ratio between the length of different sides of an element could not
be >12.

These restrictions limited the extent of curvature of the crack profile.
Experimental results have shown that the ratio of inclination, ¢ = Aa/d,,
typically is ~5 [10]. In the present case, optimization allowed a maximum in-
clination at ¢ = 4, a substantial improvement over the value ¢ = 1.7 obtained
by Trantina [34] with lower order elements. To simulate the curvature, a dif-
ferent inclination was used for each quarter of d,. For the specimens with
¢ = 4, the four inclinations were 30°, 20°, 10°, and 10°. A series of specimens
with a straight front (¢ = 0) and a series with an intermediate inclination,
¢ = 2 (angles of 49°, 34°, 19°, and 19°) also were designed to clarify the
influence on G of global inclination. Figure 6.2 provides a close-up view of
the crack tip for ¢ = 4, along with a plot of the strain energy density field.

For the specimen represented by the basic mesh, shown in Fig. 6.1, L
(length) = 17 cm, W = 6 cm, and d = 7 mm. The moment arm of the torsion
was w,, = 2 cm. Longer specimens, with L = 25 cm, were generated by
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Figure 6.2: Plot of the strain energy density field near the fracture front. The
energy is visibly concentrated along the curved front and inside the groove.



60 CHAPTER 6. FINITE-ELEMENT STUDY

adding rows of elements. Wider specimens, with W = 10 cm, were generated
by expanding the external row of elements, so that only the moment arm
was changed, to w,, = 3.5 cm, leaving all the internal region containing the
groove unaltered.

For each combination, five different crack lengths were obtained by mov-
ing the central part with the crack and resubdividing the elements of the
remaining parts. The crack length values, a, were measured from the posi-
tion of the loading points (in the present case, 0.5 c¢m from the beginning
of the specimen) to the end of the crack on the lower opening side. For the
shorter specimens, the crack length values were a = 4.5, 6.5, 8.5, 10.5, and
12.5 cm; for the longer specimens, the values were a = 5.5, 8.5, 12.5, 16.5,
and 20.5 cm.

The width of the groove, w,, was changed by incrementally decreasing
the width of the corresponding row of elements from 4 mm to 2 mm. The
change in depth of the groove, g4 = 1 — d,, from one-third to one-half of
the specimen thickness (d/3 to d/2), needed more attention: The whole slice
under the groove was contracted in the z direction, but the central block
surrounding the crack front also had to be contracted by the same amount
along the direction of the groove, in order to preserve the same aspect ratio
for the crack front profile relative to d,,. Specimens without grooves were
produced by eliminating the first slice, expanding the remaining part in the
z direction, and again expanding the central block along the direction of the
groove.

All of the present specimens also were doubled in number, to create a
version with an initial notch 2 cm long and another without a notch. The
parameter values can be summarized as follows.

e 5 crack lengths: a = 4.5, 6.5, 8.5, 10.5, and 12.5 ¢cm for L = 17 cm
a = 5.5, 8.5, 12.5, 16.5, and 20.5 cm for L = 25 cm

3 front inclinations: ¢ = Aa/d, = 0, 2, and 4

3 groove depths: g, =1—4d,, =0, d/3, and d/2

3 groove widths: ¢, = 0, 2, and 4 mm
e 2 specimen lengths: L = 17 and 25 cm

e 2 specimen widths: W = 6 and 10 cm

2 notch lengths: nl = 0 and 2 cm
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Combining all of these different parameters by Cartesian product resulted
in 600 different models. For the computation of G, three meshes were pro-
duced for each model, moving forward the region around the crack front in
two steps of 0.2 mm each. The two strain energy increases were verified to
be consistent, and the strain energy release rate on the global increment was
calculated.

The total number of meshes analyzed was 1800. To accelerate the design
process, only 60 basic meshes were worked out individually with the graphic
editor. All the other meshes were generated automatically by moving some
sets of nodes with external C' programs and Unix shell scripts expressly
written for that purpose.

6.1.4 Boundary conditions

The load was applied using a four-point-bending scheme, by imposing a
fixed vertical displacement onto the loading points, as shown in Fig. 6.1. The
inner loading point on the bottom face was moved up of 0.15 mm, and the
outer loading point on the top face was moved down of the same amount, so
that the global displacement, y, was 0.3 mm. Because the deformation is not
symmetrical with respect to the z direction, all other points had to be free
to move vertically for the whole specimen to find its equilibrium position.
To prevent other global translations or rotations of the model, two points at
the end of the specimen were fixed in = and y direction (see Fig. 6.1).

The symmetrical boundary conditions at the interface between the two
halves of the specimen were implemented in two steps:

(1) The nodes on the intact portion of the interface were bounded to move
on a vertical plane.

(2) The nodes of the cracked portion were free to move away from the
vertical plane, but they were bounded by a rigid contact surface that simu-
lated the compressive effect against the other half of the specimen (see Fig.
6.1).

The contact surface started before the first node on the top side of the
cracked surface. In the specimens with curved crack front, this positioning
left out some nodes along the crack surface, but this omission is not cause
of concern, because loading clearly would move the nodes away from the
contact surface.

6.1.5 Element properties

For the present model, 20-node elements belonging to the serendipity
family were used. These second order elements, characterized by the presence
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of additional nodes in the middle of each edge, provided a good balance
between rapidity of the convergence and computational cost. Full integration,
based on five points, made the solution more accurate. The analysis was
based on linear elasticity, with the physical properties of the material given
by the values of Young’s modulus, £ = 10*M Pa; Poisson’s ratio, v = 0.2;
and density, p = 2.2 Kg/dm?.

6.2 Testing stability

For better control of the solution process, the load application was divided
into 10 steps, a method that assured optimal linearity with load (C' = y/P
was constant within 107°, as shown in Fig. 6.3). The convergence control was
based on the displacement check. The program calculated the convergence
ratio using the equation

max(du;)

CR= (6.2)

max(du;)
where C'R is the convergence ratio, du; the node-displacement increments
in the last iteration, and du; the final displacements. The present values of
CR were always between 2 - 107'2 and 4 - 1078, indicating excellent conver-
gence, because the threshold proposed by the code supporters is 0.05. In this
type of analysis, the displacement check is more significant than the residual
force check, which is based on the ratio between the maximum residual force
and the maximum reaction force. Because the load is applied only on two
nodes, the maximum reaction force is always very high, resulting in very low
convergence ratios.

Another important test index is the singularity ratio, SR, which is related
to the conditioning number, C, of the system of linear equations to be solved
with the Crout elimination process. The conditioning number is defined as
the ratio between the highest and the lowest eigenvalues of the system. The
SR is an upper bound for the inverse of the matrix conditioning number.
Thus,

1
<C 6.3
The number of digits lost in the elimination process is 1, = —l0¢1905 R.

The singularity ratios obtained in the present solution were always between
8-1077 and 1.8 - 10~2; this result indicates a maximum loss of ~6 digits.
Because the code works in double precision (that is, with an internal accuracy
of 107'2), the first 6 digit are not affected by numerical approximations. The



6.2. TESTING STABILITY 63

1.9060e-04 T T T T T T T T

YTOT=0.03cm ©

1.90556-04 Y101=0.4cm e .

ANALT TIVAL

1.9050e-04 1

1.9045e-04 - 1

1.9040e-04 |- -

1.9035e-04 1

COMPLIANCE, C (cm/N)

1.9030e-04 1

1.9025e-04 1

1.9020e-04 ' : . ' ' ' ' :
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

DISPLACEMENT IMPOSED, Y (cm)

Figure 6.3: Test of the linearity in the loading configuration. The 10 open
circles on the left represent the real load steps in the simulation (total dis-
placement yror = 0.03 cm). The 10 solid circles represent a test made with
a higher total displacement yror = 0.4 cm. The values of C = y/P are
constant within 107° in a region one order of magnitude larger than the one
used.

numerical precision of the strain energy, U, then is < 107°, but the strain
energy release rate is obtained from differences between two values of U with
different crack length. The crack length increment chosen for the present
study assured that such differences were never < 0.1% of the strain energy
values. Thus, the numerical precision of the differences was always < 1073,
a good result because the global accuracy of the present results was ~ 1%.

The full Newton-Raphson iterative procedure was used to solve the meshes.
To test the reliability of the procedure for the present case, some solutions
were derived by using a large-displacement procedure, as well as an updated
Lagrange procedure. The obtained results were consistent within 1%. The
values of the total strain energy were obtained by integrating the strain en-
ergy density over the whole mesh. The high degree of linearity observed
suggested the recalculation of the total strain energy also by the relation
U = yP/2, where P is the reaction force at the loading points. The two
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values were consistent within 1075, a proof of physical reliability. The con-
sistency of the local trend of the strain energy caused by small displacements
of the nodes during the calculation of G and the general trend of the strain
energy among the five different crack lengths, also was checked.

To test the stability of the model, many different meshes, corresponding
to the same geometric model, were designed. The number and position of
the rows and the slices were changed, as well as the extension of the set of
nodes that was moved along with the crack front. The variations obtained
were always < 1%, giving the present results a precision of 1%.

6.3 Results

The present results, consisting of 600 GG values for all combinations of the
different parameters, are reported in Tables A.1 to A.4 in the appendix as
corrective factors, v, with respect to Evans’ equation. Thus,

w2 P?
2nWd3d,, 1

More precisely, the finite-element value of G, Grg, was evaluated using
Eq. (6.1), where U is twice the total strain energy obtained by the finite-
element analysis of the halved specimen. The load, P, was evaluated using
the well verified equation U = yP/2, where y is the value of the constant
displacement. Finally, the values for Grr were divided by the analytical
value, G 4n, obtained from Eq. (3.4) for the same load, P. The values of 5
for W =6 cm and 10 cm were 0.285 and 0.304 respectively (see § 5.2.1).

Some of the present results are plotted on Figs. 6.4-6.4, to show the in-
fluence of each parameter. Clearly, the correction value is very important
Variations from 10% to 50% are apparent for the five different crack lengths,
with a clear increasing trend, in agreement with other experimental observa-
tions [26],[31] (see also § 5.2.6).

The use of three different front inclinations (¢ = Aa/d, = 0, 2, and 4)
produced very consistent results in the center of the specimen (Fig. 6.4).
However, away from the center, the SERR varied by ~ 8% near the borders,
and G increased with the inclination. The value of ¢ = 5, observed in earlier
experiments [10] was not obtained here, because the distortion of the elements
around the crack tip was too high, but such a value could be reasonably
expected to produce a slightly higher value of .

Changes in the groove depth produced a general shift in the coefficients,
accentuated for long cracks (Fig. 6.5). The SERR increased by ~ 5% when
the groove depth increased from zero to one half of the specimen thickness.

G =1 (6.4)
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This major effect clearly resulted from the weakening of the specimen. A
similar effect influenced the dependence of G' on groove width (G increased
by ~ 4% when the groove width increased from 0 to 4 mm, as shown in Fig.
6.6).

The dependence if G on specimen dimensions was both important and
complex. For all the specimen widths considered, short crack lengths ex-
hibited consistent results, but the shorter specimen had an earlier deviation
of 1 for large values of a (Figs. 6.7 and 6.8). This deviation shows that
the increase in v for long cracks is some sort of an end effect. Furthermore,
a comparison of Figs. 6.7 and 6.8 shows a higher deviation for the larger
specimen. Both these results are in agreement with experimental observa-
tions [26],[31] and also with Fuller’s [12] conclusion that such effects should
be evaluated in terms of distance of the fracture tip from the ends of the
specimen (expressed in units of widths) rather than in terms of the ratio
between crack and specimen length.

The difference caused in the SERR by the presence of the initial notch
was generally very weak, except for short crack length, in which it produced
variations of ~ 5% (Fig. 6.9).

As a conclusion, the present finite-element analysis showed that the classi-
cal equation for describing DT fracture experiments is generally inadequate.
The presence and shape of the side groove and of the initial notch, along
with the crack front shape and the end effects, play a major role in affecting
the strain energy release rate. The effect on G of all these parameters was
examined exhaustively in the present study in terms of corrective coefficients
of the classical equation. The importance of the corrections proved to be con-
siderable (up to 40%) and likely a major cause of the large scatter between
the G — v curves measured in different laboratories.

In next section we will show how these coefficients can be actively used
to correct the analysis if the whole method is adequately modified.
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Figure 6.4: The corrective factors, 1, as a function of front inclination, ¢, for
five different crack lengths.
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Figure 6.5: The corrective factors, ¥, as a function of groove depth, g4 =
(1 —d,), for five different crack lengths.
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EFFECT OF THE GROOVE WIDTH
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Figure 6.6: The corrective factors, ¢, as a function of groove width, g, for
five different crack lengths.
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Figure 6.7: The corrective factors, ¥, as a function of specimen length, L,
for W = 6 cm, and for five different crack lengths.
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Figure 6.8: The corrective factors, 1, as a function of specimen length, L,

for W = 10 cm, and for five different crack lengths.
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Chapter 7

Improved methodology for the
load relaxation test

The aim of the present chapter is to define a new methodology for the
analysis of the DT load relaxation tests, based on the use of the corrective co-
efficients obtained by the finite-element analysis and to describe its numerical
implementation.

We already observed that the assumptions for the calculation of the STF
from G are not well understood (see § 6.1.1). However, because the stress-
corrosion index n is defined as the slope of the logarithmic K; — v curve,
we will use here the STF to make the final comparison with preexisting data
easier.

For a given specimen geometry, the corrective coefficients are dependent
on the crack length, and therefore they are not constant during the relaxation
test. As a consequence, the estimation of the SIF must be corrected during
the test and, since the inversion of the crack velocity v is affected in a non-
linear way, the K; — v curve and the stress-corrosion index result to be
significantly altered.

7.1 Corrective factors ¢ and ¢

Evans’ model leads to a linear dependence of the compliance on the crack
length a

2
Yy w;,

P nWdpn

where y is the constant displacement imposed at the loading points. Ex-
perimental compliance-calibrations [10] lead to a more general affine relation

= Ba (7.1)

69
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C = Ba + D. Since the strain energy release rate

U P2 dC
- (=) == 2
¢ (dA)y 2d,, da (7:2)

is related to the first derivative of the compliance, it appears to be indepen-
dent of the crack length.

Our finite-element analysis showed that the dependence of C on the crack
length contains some weak nonlinear terms, hardly appreciable through ex-
perimental compliance-calibrations, which nevertheless produce significant
variations in the first derivative, making the strain energy release rate de-
pendent on the crack length.

In order to account for such non-linear terms, a corrective factor £ depen-
dent on the crack length a has been introduced in Evans’ equation for the
compliance

)

Cla) = 5 = &(a)Ba = £(a)C"(a) (7.3)
where the superscript F stands for “Evans’ model” and B is the proportion-
ality constant of Eq. (7.1). Taking the first derivative of Eq. (7.3), another
corrective coefficient 1) is obtained that has to be applied to Evans’ equation
for the constant-displacement strain energy release rate (after Eq. (7.2))

6o = (0 + SV GEP = v@GE®) )

This coefficient ¢ is the one discussed in the previous chapter. The coeffi-
cient £ was not considered in a first time because it does not affect the strain
energy release rate. However, since it will be shown to be relevant for the
determination of the crack velocity, the values of £ for all the combinations
of geometrical parameters are reported in Tables A.5 to A.8.

The values of £ and vy as a function of crack length for specimens with
length L = 17 cm and width W = 6 cm are plotted in Figs. 7.1 and 7.2 as an
example. The shape of the function t(a) is characterized by a positive trend
with a flatter region in the center of the specimen, and strong deviations
moving towards the ends. The scatter introduced by the dependence on the
geometric parameters is considerable.

The overall behavior of the corrective functions can be understood as
follows. Using the two independent torsion bars model, the compliance falls
linearly to zero together with the length a of the bars. In real specimens
with short cracks, the deformation also affects the region beyond the crack,
so that the compliance is larger and its slope is lower. As a consequence,
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Figure 7.1: The corrective coefficients £ for specimens with length L = 17
cm and width W = 6 cm. The different curves represent all combinations of
the other geometric parameters.

when the crack length approaches zero, ¢ increases and diverges to infinity
and ¢ decreases towards zero. When the crack approaches the end of the
specimen, the unfractured portion becomes very weak, so that the compliance
increases faster than predicted by Evans’ equation, and diverges when the
crack reaches the end (i.e. when the specimen fails). As a consequence, both
¢ and v diverge to infinity for ¢ — L.

7.2 New equations for K; and v

We will now discuss how the introduction of crack-length dependent cor-
rective factors affects the estimates of K7 and v. As far as the mode-1 SIF
is concerned, the square root of the corrective coefficients v should be used

(see Eq. (3.5)):
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Figure 7.2: Same as in Fig. 7.1 for the corrective coefficients .

Ki(a, P) =/ (a) K[ (P) (7.5)

The calculation of the crack velocity is based on the derivation of the
crack length a(t), which is inverted from the load relaxation curve P(t),
through the constant displacement condition. Differentiation of Eq. (7.3) for
constant displacement leads to

(m) _ &) adpP (7.6)

dt Y(a) P dt

where P(t) is the measured relaxation load, and a(t) has to be inverted from
P(t) using the relation

y=Cla(t)) - P(t) = Claiy) - Piy (7.7)

where gy is the constant displacement, and the subfixes ¢ or f again denote
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a reference measurement taken at the beginning or at the end of the test.
Thus,

a(t) = C! (%) (7.8)

Substituting Eq. (7.8) into Eq. (7.6) and multiplying by the appropriate
factor ¢ we obtain:

:¢<d_a> _ 4 €(air) ai,t Py dP
dt /), 1/,(0—1(%13&)) P dt

(7.9)

Equation (7.8) also has to be substituted into Eq. (7.5) to calculate the
SIF as a function of time, and thus produce the subcritical crack-growth
curve Ky — v.

The above corrections affect both K; and v in a non-linear way which
changes the overall shape of the logarithmic K;— v curve, both in its location
and slope. The corrections reduce K; in the first part of the test, when it
is larger, and increase it when it is lower, thus resulting in a rise in the
slope, i.e. the stress-corrosion index n, in agreement with [31]. Note that
the correction on the crack velocity v also affects the slope through the v
coefficient in Eq. (7.9), which increases with a during the test. As a result,
initial large velocities are increased and final low velocities are decreased,
so that the slope n is further increased. The practical importance of the
corrections to be applied to the stress-corrosion index n will be discussed in
the following.

7.3 Numerical implementation

For each set of geometrical parameters, the finite-element analysis pro-
duced a set of five corrective coefficients & for the compliance and five coef-
ficients ¢ for its derivative, relative to different crack lengths.

The first operation is to determine a set of coefficients for the geometry
of the specific specimen used in the test. In other words, the specimen
geometry has to be interpolated from the set of tabulated geometries. Linear
interpolation is generally adequate, except for the effect of specimen length
which requires a scaling of the crack length.

The scaling of the crack lengths corresponding to the five corrective coeffi-
cients can only be effected for specimens with the same ratio d:W:L explored
here. Extrapolations far from such ratios would require further numerical
analysis. Note that the scaling also affects the length of the notch and the
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position of the loading points, which has to be taken as a new reference for
the measurement of the crack length.

Provided that the notch extends towards the center of the specimen past
the loading points, the external part of the specimen does not affect the strain
energy. As a consequence, the part of the notch that should be compared
among different specimens is the one exceeding the position of the loading
points. For example, if the notch is 2 cm long and the loading points are 0.5
cm from the end of the specimen, the effective length is 1.5 cm.

In Tables A.1-A.8 some coefficients are missing. These correspond to
the shortest crack length of notched specimens without groove, for which
the meshes could not be drown since the large horizontal extension of the
curved crack front would make it intrude in the initial notch. But these miss-
ing coeflicients are necessary for the interpolation process, and their values
were estimated by combining the coefficients relative to the corresponding
unnotched specimens together with the weak effect of the presence of the
notch observed on specimens with deeper grooves. The results are reported
in Table A.9.

The maximum crack front inclination in our numerical analysis was ¢ =
Aa/d, = 4 due to the limitations in the skewness of the elements, necessary
to perform an accurate numerical analysis. Even though the typical front
inclination is ¢ = 5 [10], the use of the finite-element analysis with ¢ = 4 is
recommended in order to guarantee reliable solutions.

Through interpolation among the lines of coefficients reported in the ta-
bles, we have now determined the set of five ¢ and £ values for the appropri-
ate specimen geometry along with the five corresponding values of the crack
length. Since the crack propagates during the experiment, both coefficients
should be fitted with smooth functions of the crack length.

An appropriate choice for smoothing the corrective factors ¢)(a) appears
to be a least-squares third-degree polynomial fit. The corrective coeflicients
¢ are best approximated by fitting the normalized compliance £(a) - a first.
This can be done integrating the polynomial which fits ) and choosing the
constant to match the central coefficient. In this way, approximation inac-
curacies below 1% on both coefficients can be obtained. Nevertheless, such
a choice may sometimes produce appreciable errors on the values of &, es-
pecially at small or large crack lengths. If this is the case, a second-order
polynomial fit for the normalized compliance will produce more accurate re-
sults. Any extrapolation out of the range explored by the present analysis is
not, recommended.

The interpolating function for the compliance has to be used together
with the measurement of the initial or final reference point a; s, P, to
invert the evolution of the crack length a(t) from the relaxation data P(t),
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using Eq. (7.7).

Finally, the corrected values of K; and v during the relaxation test are
calculated, and the complete K; — v curve is obtained. Then, the data
related to region III should be isolated, and the stress-corrosion index n can
be calculated by a least-squares linear fit.

7.4 Operational geometric constraints

The non constancy of the SIF along the specimen was already pointed
out in the literature [31], [34], a problem which was practically tackled by
assuming an operational range for the crack length in which the classical
Evans’ analysis could be used. The operational range was defined as the one
in which the SIF remained constant within 5%.

According to the above constraint, the experimental study of Shetty and
Virkar [31] determined as operational the following ranges of crack lengths

0.50W <a< L—1.00W for d:W:L=1:31.25:75
0.40W <a< L—080W for d:W:L=1:50:75

The finite-element study of Trantina [34] determined the range:

0.55W <a< L—065W for d:W:L=1:10:20

The present numerical study allows a detailed and comprehensive analysis
of the dependence of the operational range on the geometrical properties
of the specimen (see Tables 7.1 and 7.2). A general dependence on the
d:W:L ratio may be observed. At the same time, the depth and width of the
groove are also important, while the presence of the initial notch has lesser
effects. Only the ranges relative to the skewest crack fronts (¢ = 4) have
been reported because they are the only one close to the real shapes.

The range determined by Trantina was calculated for model specimens
with a weak front inclination ¢ = 1.7 and should be compared with the ranges
0.50W < a < L—0.68W and 0.76W < o < L—0.70W obtained in the present,
study respectively for ¢ = 0 and ¢ = 2 relative to specimens without notch
and groove and with a d:W:L ratio of 1:8.6:24.3. The comparison can only
be partial since the d:W:L ratios are not coincident and the position of the
loading points was presumably taken at the end of the specimen in Trantina’s
simulation. A detailed comparison with the ranges determined by Shetty and
Virkar [31] is also impossible since their specimens are thinner than the ones
considered here.
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LW |dyd| gy |nl| ®mm L_‘”,‘VM
171 6 1 0] 0089 0.66
1716 ] 2/3 1201057 0.76
1716 ] 2/3 401058 0.80
17| 6 1/2 | 2 10 1]059]| 095
17| 6 1/2 | 4 | 0 |0.69 1.01
17| 6 1 021091 0.66
1716 | 2/3 2 |2]069| 0.75
1716 | 2/3 4] 2]071 0.80
171 6 1/2 212|062 0.95
17| 6 1/2 4 2 10.70 1.01
17 | 10 1 010061 0.54
1710 2/3 | 2 | 0047 | 0.64
17110 2/3 | 4 | 0048 | 0.66
17(10] 1/2 |2 [0]049| 0.69
17 | 10 1/2 4 10 |0.54 0.72
171 10 1 0| 2062 0.53
17110 2/3 | 2 |2 ]0.52 0.64
17110 2/3 | 4 | 2054 | 0.66
17110 1/2 | 2 | 2 [0.54] 0.69
1710 1/2 | 4 | 2 (059 0.72

Table 7.1: The crack length operational range defined as the region in which
the variations of the SIF with respect to the center of the specimen are within
5%. The symbols are the same as in Table A.5. The specimen thickness is d
= 7 mm, and the crack front inclination is ¢ = 4 for all specimens.

7.5 The “true” value of the stress-corrosion
index

In order to investigate the effect of neglecting the use of the corrective
coefficients, as it happened so far in all analyses, some relaxation experiments
have been simulated numerically. A theoretical region III of a K; — v curve
was assumed with the functional form [10]

v=A-K" (7.10)

! chosen as in

with the values of the parameters n = 40 and A = 10 3ms™
typical lava rocks (see Table 4.3).

Two specimens where simulated with geometries chosen in the explored
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LW |dyd| gy |nl| ®mm L_‘”,‘VM
25| 6 1 00077 0.59
2516 | 2/3121]0/033]| 0.77
2516 | 2/3 1410 (039] 090
25| 6 1/2 210045 1.12
25| 6 1/2 | 4 | 0 |0.52 1.23
25| 6 1 0121077 0.58
2516 | 2/3 12 1]2/(039]| 0.78
2506 | 2/3| 42045/ 0588
25| 6 1/2 2 121048 1.11
25| 6 1/2 4 2 10.53 1.23
25110 1 001060 063
25110 2/3 |2 |0 |044]| 0.76
2510 2/3 | 4|0 045 0.79
25110 | 1/2 210043 0.86
25| 10 1/2 4 10 ]0.44 0.91
25 (10 1 0] 21]064]| 0.63
25110 2/3 | 2|2 (048] 0.76
25110 2/3 | 4|2 (049| 0.78
25110 1/2 | 2 | 2 |047 | 0.85
25110 | 1/2 | 4 | 2 | 048] 0.90

Table 7.2: Continuation of Table 7.1.

set of parameters and the corresponding corrective curves were interpolated
as described above. The first simulated specimen, ‘Specimen 1°, had geomet-
rical parameters L = 17 cm, W = 10 cm, d = 7 mm, d,/d = 1/2, gw = 2
mm, nl = 2 cm, and ¢=4. The second simulated specimen, ‘Specimen 2’,
had parameters L = 25 cm, W = 10 cm, d = 7 mm, d,,/d = 1, gy = 0 mm,
nl = 2 cm, and c=4.

The third-order polynomials fitting the coefficients v for the two speci-
mens were respectively

Y1(a) = 4.504- 10 *a® — 1.690 - 10 2a® 4 2.094 - 10 'a + 3.990 - 102 (7.11)

and

Po(a) = 3.219-107%a® — 6.977-107%a® + 5.274 - 10'a — 3.988 - 107" (7.12)
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The interpolating functions for the £ coefficients were determined by in-
terpolating the normalized compliance &(a)-a with a second-order polynomial
fit, and then dividing it by a. Respectively

1
&(a) =5.991-10 %a +8.100- 10" — 1168~ (7.13)

and

1
£5(a) = 3.106 - 10™%a + 5.480 - 107" 4 2.881~ (7.14)
a

The corrective functions of the SIF for the two specimen geometries are
plotted in Figs. 7.3 and 7.4. The operational ranges are indicated in these
figures, together with the ranges explored by our finite-element study.

1.60 T T T
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1.20 - 1

1.00 | R

0.80 - ]

0.60 1 L L 1 L 1

Crack length, a(cm)

Figure 7.3: The corrective function for the SIF for the geometry called ‘Spec-
imen 1’ The vertical lines delimit the range explored in the present analysis.
The horizontal lines define the operational range in which K; is constant
within 5% (thick line).

Several relaxations of 100 seconds each were simulated, using an initial
load P = 100 Kg and different values of the initial crack length.
The scheme of the simulation was as follows:
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(a) use Egs. (7.5) and (3.7) to derive the SIF K, from the initial load P,
with the corrective coefficient ¢ calculated on the initial crack length;

(b) use the theoretical relation (7.10) to obtain the crack velocity v;

(c) increment of the crack length about da = v - dt where dt is the time
step of the simulation;

(d) calculate the new load corresponding to the new crack length using
Eq. (7.7);

(e) repeat from (a).

1.20 - // .

\i 1.00 / s
0.90 = / e

0.80 - |

o] 5 10 15 20 25
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Figure 7.4: Same as in Fig. 7.3 for the geometry called ‘Specimen 2’

The relaxation curves obtained were then analyzed with the classical
Evans’ method producing the K; — v curves reported in Figs. 7.5 and 7.6
together with the theoretical curve (thicker line). Substantial differences and
a remarkable scatter are immediately apparent. Increasing the initial crack
length, the location of the estimated curves moves progressively upwards in
the bilogarithmic K; — v diagram. The shape of the curve gradually departs
from linearity when the crack tip is near the borders of the explored range.
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In fact, in these regions the corrective coefficient v is rapidly changing in
a non-linear way as the crack length increases during the test. The slope
of those curves is reduced proportionally to the local slope of the corrective
curve (a). The values of the stress-corrosion index of such curves were cal-
culated by a least-squares linear fit and the results are reported in Table 7.3.
To test the stability of the results, the simulations were performed with two
different time steps (0.5s and 0.1s), and consistent results were obtained.
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-0.14 -0.13 -0.12 -0.11 -0.10 -0.09 -0.08 -0.07 -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00

Log K¢, K; is in MPam 1/2
Figure 7.5: The K; — v curves obtained by applying Evans’ analysis to some
relaxation experiments simulated with the aid of the corrective curves for the
Specimen 1. The initial load is the same for all experiments, the different
values of the initial crack length are indicated for each curve.

The simulations in which the initial and final crack lengths were both
within the conservative operational range (in which the SIFis constant within
5%) are indicated with a symbol ‘v’ in Table 7.3. The first important result is
that Evans’ analysis underestimates the stress-corrosion index up to 30% even
operating in this range. As a consequence, this definition of the operational
range is insufficient for accurate estimates of the stress-corrosion index with
the classical Evans’ approach.

An attempt to salvage the classical Evans’ approach could still be made
by defining a new operational range in which the underestimate on n itself
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Specimen 1 a;(cm) | ag(em) | n | logA | match
Real parameters 400 | -3

Operational range 5.4 10.1
Explored range 4.5 12.5

Estimated parameters 4.5 5.1 25.8 | -4.5 X

5.4 6.2 32.3 | -3.8 v

6.0 7.0 345 | -3.6 v

7.0 8.1 35.1 | -3.3 v

8.0 9.4 31.3 | -3.1 Y

8.4 10.0 | 28.3| -3.0 v

9.0 11.3 209 | -2.8 X

9.3 12.4 1441 -2.8 X

Specimen 2 a;(em) | ag(em) | n | logA | match
Real parameters 40.0 | -3

Operational range 6.4 18.8
Explored range 5.5 20.5

Estimated parameters 5.5 5.6 33.2 | -5.3 X

6.0 6.2 33.8 | -5.0 X

6.4 6.6 34.3 | -4.8 v

7.0 7.3 35.1 | -4.5 v

8.0 8.5 36.5 | -4.2 v

9.0 9.6 37.9 | -4.0 v

10.0 10.7 | 39.0 | -3.9 v

11.0 11.7 1399 | -3.9 v

12.0 127 | 40.3 | -3.9 v

13.0 13.8 40.1 | -3.9 v

14.0 14.8 39.1 | -3.9 v

15.0 159 371 -3.9 v

16.0 171 | 33.8| -3.8 v

17.1 186 | 285 | -3.6 v

18.1 20.4 21.2 | -3.3 X

Table 7.3: The power law parameters obtained by linear fit of the K; — v
curves in Figs. 7.5 and 7.5. The geometrical parameters of Specimen 1 were
L=17cm, W =10 cm, d = 7 mm, d,/d = 1/2, gw = 2 mm, nl = 2 cm,
¢ = 4. Specimen 2 had L =25 cm, W =10 cm, d = 7mm, d,/d =1, gy = 0
mm, nl = 2 cm, ¢ = 4. The initial and final crack lengths for each test were
reported and a symbol ‘v’ was marked in last column if the whole relaxation
took place inside the range in which K7 is constant within 5%.
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Figure 7.6: Same as in Fig. 7.5 for the Specimen 2

is limited to 5%. Unfortunately, for Specimen 1, the smaller error obtained
for n is about 12%, making the definition of such a range impossible. As for
Specimen 2, the errors on n could be limited to 5% only if the whole relaxation
were performed in a very narrow operational range of crack lengths (from 9
cm to 15 cm on a 25 cm long specimen, see Table 7.3). This constraint
is a very stiff one, since the attempts to produce an initial crack with a
length in such a tight range would lead to discard most specimens. Moreover,
the possibility of performing multiple relaxation tests on the same specimen
would be considerably reduced.

On the contrary, by applying our corrective procedure there is no need
to comply to such tight constraints, since the use of the corrective curves
allows one to obtain accurate results working in a range that is much larger
than the one required to obtain reliable estimates of n by using the classical
Evans’ method. The range left unexplored by our finite-element analysis
is just five centimeters from each end of the specimen, which, for example,
implies operational crack lengths covering a comfortable 15 cm range on 25
cm-long specimens. Table 7.3 shows that in this interval the classical Evans’
analysis would produce underestimates up to 65%.



Chapter 8

Conclusions

8.1 What have we learnt?

While fracture is the physical process ruling many geophysical phenom-
ena, it is so complex that developing theoretical models which can be effec-
tively applied in practice has proved so far to be an impossible task. Further-
more, even the applicability of the models which have been developed has
been hampered by the lack of a sufficiently accurate knowledge of fracture
parameters.

We have focused our interest on this problem, attempting to improve
the existing experimental techniques for the measurement of fracture param-
eters. We started from the most reliable experimental procedure, double
torsion load relaxation method, and optimized several experimental aspects.
These ranged from mere mechanical features like the stiffness of the loading
machine, to the tight control of the environment, to data acquisition and
inversion procedures.

This optimization has been apparently successful and allowed us to mea-
sure the subcritical fracture propagation index n with good coherence and
repeatability (standard deviations of order 20%).

The finite-element analysis showed that the classical equation for describ-
ing DT fracture experiments is effectively inadequate. The presence and
shape of the side groove and of the initial notch, along with the crack-front
shape and the end effects, play a major role in affecting the specimen com-
pliance and, therefore, the determination of all other quantities, such as the
strain energy release rate, the stress intensity factor and the crack velocity.

The effect of all these parameters on the specimen compliance was identi-
fied exhaustively in terms of corrective coefficients for the classical equation.
Although the deviations from linearity of the compliance as a function of
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crack length are not so large, the consequences on the determination of all
the other quantities proved to be substantial. The deviations of G and K
from Evans’ equations were up to 40% in the explored range of parameters.
Following the approach of Trantina [34] and Shetty et al. [31], the opera-
tional range of the crack length in which the stress intensity factor is constant
within 5% was determined as a function of all geometrical parameters, and
this has shown that the definition of such operational range is not sufficient
for the classical method to produce accurate results in the estimate of the
stress-corrosion index.

We have shown first of all that the equation for the crack velocity should
also be corrected. Second, since the corrective coefficients depend on crack
length, both the corrections on K; and v vary during the relaxation test.
As a consequence, the K; — v curves result significantly altered. The most
important result is that not only the location of the curves is changed, but
their shape is also altered, resulting in a systematic increase in the slope. In
other words, the classical Evans’ method systematically underestimates the
stress-corrosion index, which is considered as the most important parameter
of subcritical crack-growth.

According to two numerical experiments of load relaxation tests that we
performed, the neglection of the corrective coefficients leads to underestimat-
ing the stress-corrosion index up to 30% even if the relaxation takes place
in the classical “optimal” operational range of crack lengths, where the vari-
ations of K; do not exceed 5%. On the contrary, the use of the corrective
coefficients allows one to obtain accurate estimates by using a wide range of
specimen geometries and operational crack lengths.

8.2 An already published example

In section § 5.2.7 we mentioned the surprising result that estimates of
the stress-corrosion index reported separately by Atkinson [3] and Swanson
[32] for Westerly granite and Ralston basalt using samples cut from the same
blocks were different in the average value by about 50%.

This striking inconsistency can be explained in light of our results. The
length to width ratio of the specimens used by Atkinson was L/W ~ 2—2.5,
whereas Swanson used longer specimens with L/W ~ 6. If we observe Fig-
ures 6.7, 6.8, 7.3, and 7.4, we find that for low values of L/W, the inclination
of the corrective curve ¢ (a) is more important and that the central plateau
is not well formed. On the contrary, longer specimens present an extended
flat region.

In section § 7.5 we showed that the extent of the underestimation of the
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stress-corrosion index produced by Evans’ method was tight to the local slope
of the corrective function ¢(a). Therefore, it is not surprising that Atkinson
obtained lower values than Swanson, although both authors claim to have
respected the recommended operational range for crack length. In light of
these considerations, the values of n reported by Swanson should be more
accurate.

8.3 Perspectives

The examination of many aspects of the experimental procedure and the
finite-element study of the strain field in the DT specimen allow us to trust
in an experimental configuration, for which the boundary conditions and the
internal state of strain are known.

In our project this is only the basic hypothesis to start a new stage of ex-
periments aimed at the reproduction of the earthquake Physics in controlled
conditions.

The lava rock specimens will be driven to critical conditions and then will
be applied a very low strain rate to simulate the tectonic loading in an active
zone surrounding a fault.

A system of several piezoelectric transducers will be connected in different
positions on the specimen to monitor the arrival of the acoustic waves emitted
by the microfracture events connected to damaging of the specimen and the
propagation of a macrocrack in the midplane (fault). The signals will be
sampled at a very high rate (~ 5 MHz) through a powerful digital acquisition
system and stored in real time on a hard disk.

The basic methods of seismology will then be used to invert the space
and time location of the events, along with their “magnitude”. The resulting
catalog will be used to perform statistic analysis on the interevent times and
on the frequency-magnitude distribution.

The aim of this study is to investigate whether the Gutenberg-Richter
scaling low that is observed at crustal scales extends down to the typical
scales of a laboratory. This is very important, since it would be the founda-
tion to transfer to the field the understanding of the seismic source that can
be achieved in the laboratory.
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Appendix A

Corrective Coefficients ¢ and ¢
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APPENDIX A. CORRECTIVE COEFFICIENTS +y AND ¢

a | 4.5cm | 6.5cm | 8.5cm | 10.5cm | 12.5cm

dp/d | gw | nl | c
1 0100|0936 | 0962 | 0.966 | 0.971 1.039
1 00 1]2]0861 (095 | 095 | 0.963 1.038
1 0|0 |4 0774 0934 | 0,949 | 0.956 1.013
2/3 12 |0 |0] 0944 | 0.965 | 0.971 | 0.987 1.119
2/3 | 2 [0]2]0.938 | 0.965 | 0.971 | 0.987 1.091
2/3 | 2 |0 [4] 0925 | 0.961 | 0.968 | 0.981 1.068
2/3 14 |0 |0] 0968 | 0.991 | 0.997 | 1.021 1.186
2/3 | 4 |0]2] 0962|0988 | 0.995 | 1.015 1.149
2/3 | 4 | 0|4]0.948 | 0.985 | 0.992 | 1.010 1.115
1/2 1 2|0 [0| 0964 | 0991 | 0.999 | 1.048 1.281
1/2 1 2|0 [2]| 0961 | 0988 | 1.000 | 1.040 1.252
1/2 1 2 |0 ]4)| 0952|0984 | 0.997 | 1.034 1.219
1/2 | 4 | 0|0] 0977 | 1.025 | 1.047 | 1.118 1.440
1/2 | 4 |0 [2]0973 | 1022 | 1.044 | 1.111 1.398
1/2 1 4|0 (40964 | 1.021 | 1.040 | 1.099 1.354
1 0210|0909 | 0961 | 0965 | 0971 1.039
1 0] 212 - 0.948 | 0.961 | 0.963 1.037
1 0|2 |4 - 0.931 | 0.948 | 0.954 1.012
2/3 | 2 [2]0] 0929 | 0.966 | 0.969 | 0.989 1.120
2/3 | 2|2 ]2]0921 | 0.964 | 0.972 | 0.988 1.093
2/3 | 2|2 [4] 0897 | 0.961 | 0.968 | 0.978 1.067
2/3 | 4 | 2|0]| 0952|0989 | 0.996 | 1.017 1.186
2/3 | 4 | 220941 | 0.987 | 0.994 | 1.018 1.149
2/3 | 4 2|4 0911 | 0.981 | 0.992 | 1.009 1.115
1/2 1 2|2 |0| 0961 | 0990 | 0.998 | 1.046 1.282
1/2 1 2 | 2|2 0955 | 0.987 | 0.998 | 1.041 1.253
1/2 | 2 | 2[4 0944 | 0.985 | 0.995 | 1.035 1.220
1/2 | 4 | 21010976 | 1.026 | 1.045 | 1.119 1.438
1/2 1422|0970 | 1.021 | 1.044 | 1.113 1.400
1/2 | 4 | 2 [4]0.958 | 1.018 | 1.040 | 1.098 1.347

Table A.1: The corrective factors ¢ for specimens of length L = 17
cm and width W = 6 cm; d is the specimen thickness, d, the
thickness along the groove, g, the groove width in mm, nl/ the
notch length in ¢cm, ¢ = Aa/d, the inclination of the crack front.
Some data is missing because the curved crack front would cross
the initial notch. An estmate of their value may be found in Table
A9 (see § 7.3).



a | 4.5cm | 6.5cm | 8.5cm | 10.5cm | 12.5c¢m

do/d | gu | 0l | c
1 00|01 0892 | 0946 | 0.976 | 1.038 1.251
1 0|02 0695 | 0.898 | 0.932 | 0.992 1.205
1 00 |4] 0562 ]| 0859 | 0.892 | 0.944 1.113
2/3 12 |0 ]|0]| 0904 | 0958 | 0.997 | 1.095 1.430
2/3 |2 |0|2] 0876 | 0.938 | 0.979 | 1.066 1.361
2/3 | 2|0 |4 0845 | 0.917 | 0.958 | 1.039 1.297
2/3 |4 10]0] 0921 | 0975 | 1.023 | 1.138 1.529
2/3 | 4 |0]2] 0891 | 0.954 | 1.002 | 1.112 1.457
2/3 | 4|0 [4] 085 | 0931 | 0.979 | 1.079 1.384
1/2 1 2|0 |0 0937|0999 | 1.060 | 1.221 1.721
/2 12 | 0]2|0918 | 0984 | 1.044 | 1.195 1.646
1/2 1 2|0 |4 0894 | 0969 | 1.026 | 1.166 1.586
1/2 | 4 | 0[]0 0960 | 1.037 | 1.119 | 1.338 1.987
1/2 1402|0935 | 1020 | 1.103 | 1.303 1.902
1/2 1 4]0 (40912 | 1.004 | 1.081 1.269 1.804
1 0210083093 | 0973 | 1038 1.255
1 01212 - 0.899 | 0.928 | 0.986 1.201
1 01]121|4 - 0.861 | 0.885 | 0.940 1.114
2/3 |2 2|0 085 | 0.951 | 0.995 | 1.096 1.424
2/3 | 2 2]2] 0836 | 0931 | 0.975 | 1.067 1.362
2/3 | 2|2 |4]0.799 | 0.908 | 0.953 | 1.037 1.298
2/3 | 4 | 20| 0874 | 0.967 | 1.019 | 1.140 1.524
2/3 | 4|2 ]2 0847 | 0.943 | 1.000 | 1.110 1.459
2/3 | 4|24 0805|0920 | 0.977 | 1.078 1.387
1/2 1 2 [ 2]0] 0.908 | 0.991 | 1.061 1.221 1.714
1/2 | 2 |2 (20883 | 0977 | 1.045 | 1.190 1.647
1/2 | 2 | 2[4 0856 | 0.960 | 1.027 | 1.167 1.579
1/2 1420|0924 | 1030 | 1.120 | 1.339 1.988
1/2 | 4|2 (20897 | 1.012 | 1.100 | 1.304 1.903
1/2 | 4|2 (40865 | 0992 | 1.083 | 1.270 1.806

Table A.2: The corrective factors ¢ for specimens of length L = 17

cm and width W = 10 cm.
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a | 5.5em | 8.5cm | 12.5cm | 16.5e¢m | 20.5cm
dp/d | g, | 0l | c
1 0] 0|0 095 | 0.966 | 0.965 0.967 1.046
1 0101210922 0.960 | 0.964 0.965 1.040
1 0] 0|4 0892 ] 0.951 | 0.956 0.956 1.022
2/3 12 | 0|0 0960 | 0.967 | 0.968 0.974 1.127
2/3 |2 |0]2] 0960 | 0.969 | 0.966 0.975 1.092
2/3 | 2|0 |4 0953|0965 | 0.967 0.970 1.068
2/3 | 4 10]0| 0984 | 0.991 | 0.992 0.992 1.185
2/3 | 4 10]2]0983 | 0.991 | 0.992 1.000 1.146
2/3 | 4|0 |4]0977 | 0.987 | 0.992 0.993 1.127
1/2 1 2|0 [0] 0983|098 | 0.991 1.001 1.275
/2 12 |0 (20982 | 098 | 0.989 1.003 1.242
1/2 | 2 |0 [4] 0976 | 0.982 | 0.986 0.999 1.219
1/2 | 4 | 0|0 1.018 | 1.016 | 1.022 1.048 1.448
1/2 1 4]0 (2] 1014 | 1.019 | 1.022 1.044 1.389
1/2 1 4|0 (4] 1.009 | 1.016 | 1.018 1.038 1.348
1 012101 0951 | 0.965 [ 0.965 0.966 1.041
1 0] 212 - 0.960 | 0.962 0.960 1.043
1 012 1|4 - 0.946 | 0.955 0.956 1.020
2/3 |2 |2]0] 0961 | 0.967 | 0.966 0.975 1.128
2/3 | 2 |2]2]095 | 0968 | 0.968 0.976 1.093
2/3 1 2 | 2|4 0.949 | 0.967 | 0.965 0.971 1.069
2/3 1 4 | 200983 0.991 | 0.991 1.000 1.187
2/3 | 4 2]2]0980 | 0.990 | 0.991 0.997 1.148
2/3 | 4| 2[4 0968 | 0.987 | 0.988 0.996 1.121
1/2 1 2 [ 2 ]0]0.984 | 0.990 | 0.989 1.008 1.276
1/2 | 2 |2 [2]0.982 | 0.98 | 0.986 1.004 1.242
1/2 | 2 | 2[4 0.976 | 0.983 | 0.987 0.994 1.220
1/2 | 4|2 |0] 1016 | 1.023 | 1.024 1.049 1.439
1/2 | 4|2 (2] 1014 | 1.016 | 1.020 1.045 1.390
1/2 | 4|2 [4]1.007 | 1.014 | 1.020 1.039 1.349

Table A.3: The corrective factors 1 for specimens of length L = 25
cm and width W = 6 cm.



a | 5.5em | 8.5cm | 12.5cm | 16.5e¢m | 20.5cm
dp/d | g, | 0l | c
1 0101010929 | 0.962 | 0.966 0.983 1.251
1 00 ]|2(0841 | 0913 | 0.937 0.946 1.203
1 01]0 4] 0775 | 0.883 | 0.898 0.914 1.118
2/3 12|00 0937 | 0964 | 0.972 1.005 1.430
2/3 |2 |0]2]0915 | 0950 | 0.958 0.983 1.343
2/3 |2 |0[4]0891 | 0932 | 0.939 0.972 1.304
2/3 | 4 10]0]| 0951 | 0978 | 0.982 1.019 1.537
2/3 | 4|0 ]2]0927 | 0.959 | 0.966 1.008 1.427
2/3 | 4|0 |4]0901 | 0942 | 0.953 0.987 1.382
1/2 120 |0] 0965 | 0981 | 0.987 1.056 1.711
1/2 1 2 |0 (20948 | 0.973 | 0.985 1.047 1.631
1/2 1 2|0 [4]0.932]0.95 | 0.970 1.029 1.586
1/2 | 4 | 0 |0 0.981 | 1.004 | 1.014 1.118 1.974
1/2 | 4]0 (2] 0965 | 0990 | 1.002 1.098 1.862
1/2 140 (4] 0949 | 0.978 | 0.987 1.089 1.801
1 0] 21010905 | 095 | 0.963 0.976 1.254
1 0] 212 - 0.908 | 0.936 0.949 1.205
1 012 1|4 - 0.876 | 0.895 0.917 1.109
2/3 |2 |2]0] 0922 | 0963 | 0.967 0.995 1.431
2/3 | 2 |2]2]0901 | 0946 | 0.959 0.984 1.344
2/3 | 2 | 2|4]0.872 ] 0.927 | 0.940 0.973 1.305
2/3 14 | 2]0]0.932] 0974 | 0.983 1.020 1.522
2/3 | 42200911 | 0959 | 0.967 1.010 1.444
2/3 | 4|2 (40881 | 0940 | 0.954 0.989 1.383
1/2 12 [ 2]0]0.950 | 0.985 | 0.988 1.056 1.712
1/2 | 2 |2 [2]0.930 | 0974 | 0.979 1.047 1.631
1/2 | 2 | 2[4 0912 | 0.960 | 0.971 1.029 1.587
1/2 | 4|2 |0] 0967 | 1.001 1.015 1.118 1.975
1/2 | 4 |2 [2]0.947 | 0.987 | 1.003 1.099 1.883
1/2 | 4|2 [4]0927 | 0972 | 0.995 1.078 1.802

Table A.4: The corrective factors 1 for specimens of length L = 25
cm and width W = 10 cm.
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a | 4.5¢cm | 6.5cm | 8.5c¢m | 10.5e¢m | 12.5e¢m

dp/d | g, | Dl | c
1 00 |0 1101 | 1.057 | 1.036 | 1.023 1.018
1 00120892 0.902 | 0916 | 0.925 0.936
1 00 |4]0752 ] 0.787 | 0.827 | 0.853 0.875
2/3 12 10|0] 1.221 | 1.141 | 1.100 | 1.077 1.069
2/3 1210 |2] 1.156 | 1.095 | 1.065 | 1.047 1.042
2/3 1 2 |0 4] 1081 | 1.042 | 1.024 | 1.014 1.013
2/3 | 4100|128 | 1.192 | 1.145 | 1.118 1.110
2/3 | 4|02 1215 | 1.143 | 1.107 | 1.087 1.082
2/3 | 4|0 |4]1.134 | 1.08 | 1.062 | 1.050 1.049
1/2 12|10 ]0]| 1395 | 1.267 | 1.198 | 1.159 1.150
1/2 | 2 |0 |2] 1354 | 1.238 | 1.175 | 1.141 1.132
1/2 1204|1304 | 1.202 | 1.148 | 1.118 1.111
1/2 14100 1513 1.365 | 1.282 | 1.238 1.233
1/2 | 4|02 1471 | 1.334 | 1.258 | 1.218 1.213
1/2 |40 4| 1412 | 1.292 | 1.226 | 1.191 1.186
1 020 1.111 | 1.063 | 1.040 | 1.026 1.021
1 01212 - 0.907 | 0.920 | 0.929 0.939
1 0214 - 0.793 | 0.831 | 0.856 0.877
2/3 1 2|20 1.224 | 1.143 | 1.101 | 1.077 1.070
2/3 | 2 |2 2] 1159 | 1.096 | 1.066 | 1.048 1.043
2/3 | 2|2 |4]1.086 | 1.043 | 1.025 | 1.015 1.013
2/3 | 420 1.290 | 1.195 | 1.147 | 1.119 1.112
2/3 | 4|2 |2] 1221 | 1.146 | 1.109 | 1.088 1.083
2/3 | 4| 2|4 1.142 | 1.088 | 1.065 | 1.052 1.050
/2 | 2|20 1397 | 1.268 | 1.199 | 1.160 1.151
1/2 1 2|2 ]2]| 1356 | 1.239 | 1.176 | 1.141 1.133
/2 1 2|2 (4| 1306 | 1.203 | 1.148 | 1.118 1.111
1/2 1420|1516 | 1.366 | 1.283 | 1.239 1.233
1/2 | 4 | 2|2 1474 | 1.335 | 1.259 | 1.219 1.213
1/2 | 4|2 4| 1416 | 1.293 | 1.227 | 1.191 1.187

Table A.5: The corrective factors & for specimens of length L = 17
cm and width W = 6 cm; d is the specimen thickness, d, the
thickness along the groove, ¢, the groove width in mm, nl the
notch length in ¢cm, ¢ = Aa/d, the inclination of the crack front.
Some data is missing because the curved crack front would cross
the initial notch. An estmate of their value may be found in Table
A9 (see § 7.3).



a | 4.5em | 6.5em | 8.5em | 10.5em | 12.5em,
dp/d | g, | Dl | c
1 00 |0 108 | 1.037 | 1.020 | 1.016 1.034
1 00120764 | 0.783 | 0.819 | 0.850 0.891
1 00 ]|4] 0615 | 0.659 | 0.719 | 0.767 0.815
2/3 120 |0] 1223 | 1.135 | 1.098 | 1.086 1.108
2/3 12 |0]2]1.103 | 1.048 | 1.029 | 1.029 1.054
2/3 |2 |0]4]1.010 | 0.979 | 0.975 | 0.983 1.012
2/3 1 4100|1289 | 1.186 | 1.142 1.128 1.154
2/3 | 410 |2]1.166 | 1.096 | 1.071 1.068 1.098
2/3 | 4|0 ]4]1.067 | 1.023 | 1.013 | 1.020 1.052
1/2 1 2|00 1.45 | 1.305 | 1.235 1.210 1.238
1/2 1202|1380 | 1.251 | 1.192 | 1.173 1.202
1/2 1204|1313 ] 1.201 | 1.153 | 1.140 1.169
1/2 | 4|0 |0] 159 | 1.414 | 1.330 | 1.303 1.343
1/2 | 4]0 ]2]| 1518 | 1.358 | 1.285 1.265 1.305
1/2 | 4|0 |4 1442 | 1.301 | 1.240 | 1.225 1.265
1 0] 20| 1.101 | 1.042 | 1.022 1.018 1.035
1 0] 212 - 0.788 | 0.822 | 0.853 0.892
1 0112 |4 - 0.665 | 0.723 | 0.769 0.817
2/3 12|20 1232|1137 | 1.099 | 1.087 1.108
2/3 |2 |2]2] 1113 | 1.051 | 1.030 | 1.029 1.055
2/3 | 2 |2 4] 1021 | 0982 | 0.976 | 0.983 1.012
2/3 | 4|2 |0] 1.301 | 1.189 | 1.143 | 1.129 1.154
2/3 | 4| 2|2 1178 | 1.100 | 1.072 1.069 1.099
2/3 | 4|2 ]4]1.082 | 1.027 | 1.015 | 1.021 1.053
/2 | 2|2 ]0] 1461 | 1.306 | 1.235 | 1.210 1.239
1/2 | 2|2 ]2 1387 | 1.252 | 1.192 1.174 1.203
1/2 | 2 | 2[4 1320 | 1.203 | 1.153 | 1.140 1.170
1/2 1420|1602 1.415 | 1.330 | 1.303 1.344
1/2 | 42 ]2 1526 | 1.359 | 1.286 | 1.265 1.305
1/2 | 4|2 4| 1451 | 1.304 | 1.241 1.226 1.265

Table A.6: The corrective factors & for specimens of length L = 17

cm and width W = 10 em.
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a | h.bem | 8.5cm | 12.5em | 16.5em, | 20.5em,
dp/d | gy |0l | ¢
1 00 ]0]|1.075 | 1.036 | 1.014 1.003 0.998
1 0020894 | 0.915 | 0.932 0.940 0.948
1 010 ]|4] 0763 | 0.827 | 0.871 0.894 0.911
2/3 1200|1173 | 1.100 | 1.057 1.036 1.029
2/3 12 |10]2]1.119 | 1.064 | 1.033 1.017 1.013
2/3 12|04 1.056 | 1.024 | 1.005 0.996 0.995
2/3 1 4 10|0]1.230 | 1.144 | 1.094 1.069 1.063
2/3 | 4021172 | 1.106 | 1.069 1.050 1.045
2/3 | 410 |4]1.104 | 1.062 1.039 1.027 1.025
/2121001321 | 1.196 | 1.123 1.087 1.079
1/2 121021287 | 1.174 | 1.108 1.075 1.069
1/2 12|04 1244 | 1.146 | 1.089 1.061 1.055
1/2 | 4 | 0|0 1.429 | 1.278 | 1.189 1.145 1.142
1/2 | 4102|1393 | 1254 | 1.173 1.133 1.130
1/2 1 4]0 4] 1343 | 1.222 1.151 1.116 1.113
1 02 |0 1.081 | 1.040 | 1.016 1.005 1.000
1 0112 |2 - 0.919 | 0.934 0.942 0.950
1 0112 |4 - 0.831 | 0.873 0.896 0.912
2/3 12 |2]0]1.175 | 1.101 1.058 1.036 1.030
2/3 12|22 1121 | 1.065 1.034 1.018 1.013
2/3 | 2 |2 |4] 1059 | 1.025 1.006 0.997 0.995
2/3 | 4 20| 1233 | 1.146 | 1.096 1.070 1.064
2/3 | 4221175 | 1.109 | 1.070 1.051 1.046
2/3 | 4| 2|4/ 1.108 | 1.064 | 1.040 1.028 1.026
/2 1 2210|1322 | 1.197 | 1.124 1.087 1.080
1/2 1222|1288 | 1.174 | 1.109 1.075 1.069
1/2 | 2 | 2 |4] 1.245 | 1.147 | 1.090 1.061 1.056
1/2 | 4120|1431 | 1.279 | 1.190 1.146 1.142
/2 1422|139 | 1.255 1.174 1.134 1.131
1/2 | 42 |4 1345 | 1.223 | 1.152 1.117 1.114

Table A.7: The corrective factors & for specimens of length L = 25
cm and width W = 6 cm.



a | h.bem | 8.5cm | 12.5em | 16.5em, | 20.5em,

dp/d | gy |0l | ¢
1 00 |0 1.054 | 1.018 | 1.002 0.996 1.010
1 00120765 | 0.815 | 0.861 0.889 0.922
1 010 ]|4] 0626 | 0.717 | 0.791 0.835 0.875
2/3 1200|1168 | 1.093 | 1.054 1.036 1.055
2/3 1210 |2] 1.067 | 1.025 1.007 1.000 1.022
2/3 1 2|0 |4]0.987 | 0971 | 0.970 0.972 0.996
2/3 1 4100 1.225] 1.134 | 1.086 1.065 1.087
2/3 | 4 0|2 1.120 | 1.064 | 1.038 1.028 1.054
2/3 | 4|0 |4]1.036 | 1.007 | 0.998 0.998 1.025
/2121001362 | 1.221 1.142 1.107 1.135
/2 1210721300 | 1.179 | 1.113 1.085 1.114
1/2 1 2|0 4| 1242 | 1.140 | 1.087 1.065 1.093
1/2 | 4 |0 |0] 1479 | 1.304 | 1.205 1.165 1.206
1/2 | 4]0 ]2 1414 | 1.260 | 1.175 1.142 1.184
1/2 | 4]0 |4 1350 | 1.217 | 1.146 1.119 1.158
1 020 1.063 | 1.020 | 1.004 0.997 1.010
1 0] 212 - 0.818 | 0.863 0.890 0.923
1 012 |4 - 0.722 | 0.793 0.837 0.876
2/3 1220|1173 | 1.094 | 1.054 1.036 1.055
2/3 12 (2|2]1.072 | 1026 | 1.007 1.001 1.022
2/3 1 22 4]0993 | 0972 | 0.970 0.972 0.996
2/3 1 420|123 | 1.136 | 1.087 1.065 1.088
2/3 | 4| 2|2 1.127 | 1.066 | 1.038 1.028 1.054
2/3 | 4| 2|41 1.044 | 1.009 | 0.999 0.998 1.026
/2 12 2]0] 1.365 | 1.221 1.142 1.108 1.135
/2 1222|1303 | 1.179 | 1.113 1.085 1.114
1/2 | 2 | 2 |4] 1.246 | 1.141 1.087 1.065 1.093
1/2 | 4|20 1483 | 1.304 | 1.206 1.165 1.206
/2 | 4] 2|2 1418 | 1.261 1.176 1.142 1.184
1/2 | 4241354 | 1218 | 1.146 1.119 1.158

Table A.8: The corrective factors & for specimens of length L = 25

cm and width W = 10 em.
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APPENDIX A. CORRECTIVE COEFFICIENTS +y AND ¢

17cm | 17cm | 17cm | 17cm | 25¢cm | 25cm | 25¢m | 25cm
6cm | 6cm | 10cm | 10cm | 6cm | 6ecm | 10cm | 10cm
2 4 2 4 2 4 2 4
0.895 | 0.756 | 0.772 | 0.624 | 0.896 | 0.765 | 0.769 | 0.631
0.849 | 0.756 | 0.657 | 0.520 | 0.920 | 0.890 | 0.825 | 0.755

<o =

Table A.9: The corrective coefficients & and v reported here were
estimated to fill the gaps in Tables A.1-A.8.
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