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Propagation of a brittle fracture in a viscoelastic fluid

Herv�e Tabuteau,†ab Serge Mora,ab Matteo Ciccotti,abc Chung-Yuen Huid and Christian Ligoure*ab

Received 1st June 2011, Accepted 21st July 2011

DOI: 10.1039/c1sm06024d
During pendant drop experiments, a model physical gel made from oil in water microemulsion droplets

reversibly linked together by triblock copolymers, exhibit a very peculiar filament rupture

corresponding to highly brittle failure of a viscoelastic fluid. The fracture propagation has been tracked

by high speed videomicroscopy. Analysis of the time evolution of the fracture profile shows that the

fracture is purely elastic and reversible without any significant bulk and interfacial viscous dissipation.

However, since the elastic moduli of such complex fluids are low, hyper elastic corrections have to be

taken into account for a quantitative analysis of the fracture profile. This brittle behavior is well

explained by a hyperelastic generalization of the viscoelastic trumpet model of de Gennes. The velocity

of the fracture’s propagation is measured and compared to the predictions of a simple microscopic

model.
1 Introduction

Although fracture mechanics were originally based on an equi-

librium transformation between the mechanical energy stored in

an elastic body and the surface energy that is necessary to

produce a fracture in the body,1 in most practical cases the high

concentration of stress in the crack tip region implies the acti-

vation of dissipative processes that adsorb a large amount of

energy, which is generally dominant in the energy balance of

fracture propagation. This energy dissipation implies an irre-

versibility of fracture and a velocity dependence of the fracture

energy G(V).2,3 In his famous seminal work Griffith1 tested its

energy balance criterion on a very brittle solid such as glass where

energy dissipation is considered to be minimal. In less brittle

materials such as polymers or metals, the fracture energy can be

hundreds to thousands of times larger than the surface tension

due to the high amount of plastic deformation in the neighbor-

hood of crack tips.

Fracture in reversible physical gels is less documented and

understood than in solid materials but attracts a great deal of

interest in recent years.4–16 Filament stretching extensional rhe-

ometry8–10 or capillary breakup rheometry experiments9,10 have

been used to study the fracture of networks of associative poly-

mers or solutions of entangled wormlike micelles, but these
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experiments were essentially limited to the measurements of

extensional viscosities. On the other hand, quantitative analysis

of the crack propagation and morphology in viscoelastic solids in

planar geometry have been performed.4,5,17 However, to the best

of our knowledge, the systematic analysis of morphology and

propagation of a crack in a viscoelastic fluid does not have been

yet reported.

Here we present a system where the Griffith theory is appli-

cable with an excellent approximation, consisting in a soft

transient network gel in which nanodroplets of an oil-in water

microemulsion are reversibly linked by telechelic polymers18

(Fig. 1). This system is a model Maxwell fluid. Indeed, its linear

rheological properties can be characterized by a shear plateau

modulus mN and a single dominant relaxation time s.18 More-

over, it does not exhibit any shear thinning, nor shear thickening

nor shear banding until it breaks, as shown from flow

curves.11,12,14 This is in contrast to the behaviour of one of the

more popular Maxwell fluids, i.e. solutions of entangled worm-

like micelles.
Fig. 1 A schematic of a bridged microemulsion. The telechelic polymers

can either link two oil droplets or loop on a single one. (Left) Before the

crack nucleation (bold dashed line) polymers can bridge oil droplets on

both sides of the bold dashed line. (Right) When the crack occurs, the

same polymers cannot cross the bold dashed line any more and form

bridges in the other directions or loops.
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Fig. 2 Frequency sweep experiments (strain amplitude: 10%). Storage

modulus, G0, (filled symbols) and loss modulus, G0, (unfilled symbols) as

a function of the frequency u for the fluids R6 (circles) and R12 (trian-

gles). Solid lines correspond to fits by a Maxwell model which give us the

elastic shear modulus and the relaxation time of each fluid.
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In a previous paper,12 some of us have investigated the fracture

initiation of this Maxwell fluid using a pendant drop experiment,

which corresponds to a pure elongational stress condition due to

the lack of contact with solid interfaces near the fracture region.

We have shown that the fracture initiation process is governed by

the thermally activated nucleation of a critical crack in the

polymeric network. In this approach, the rupture stress was

predicted to be on the order of the shear modulus, in very good

agreement with experimental data. One of the key points to

understand this mechanism of fracture is the bond reversibility

and the corresponding relevant ultra low interfacial energy

needed to nucleate the crack. This interfacial tension results from

the loss of conformational entropy of polymeric bonds near

a crack interface and is typically on the order of few mN m�1.19

The aim of this paper is the rationalization and the quantifi-

cation of the crack propagation for such a Maxwell fluid in this

failure geometry, by a time-resolved analysis of the shape of the

growing crack. We want to address the following questions:

What is the fracture energy? What is the crack propagation

speed? We will show that the fracture profile has a parabolic

shape that can be rationalized using a finite elasticity theory20,21

that needs to be used, because of the large deformations

exhibited in this soft material. The only ingredients affecting the

energy balance in the fracture mechanism of a brittle material are

the bulk elastic modulus mN and the surface tension g. According

to such a description, the fracture energy G is substantially

independent of fracture velocity (once the velocity is enough for

having a purely elastic material response), and the crack velocity

should only be limited to the Rayleigh waves propagation

velocity.22 However, for the complex fluid we consider, the

propagation of the crack takes place at a constant velocity of the

order of few mm s�1, which is much smaller than the Rayleigh

waves velocity in the gel cR x 1 m s�1.

The origin for this characteristic velocity must be sought at the

scale of the microscopic mechanisms of crack propagation, i.e.

the debonding mechanisms of the polymer chains grafted on the

oil droplets. The energetics of polymer debonding are very weak

compared to the surface tension of the gel. This is constituted by

a reversible term gpol associated to the free energy of purely

entropic origin required to ungraft the polymers along a unit

interface and an irreversible term associated to the Stokes dissi-

pation caused by the motion of the oil droplet in the viscous fluid

(water) that is necessary to propagate the stresses to the new

crack tip. These two terms describe the wet fracture of the

polymer network inside the solvent and our claim is that they

determine the time scale for fracture propagation. However, they

are both energetically very small in relation to the energy to

create the two new interfaces between the gel and the air, and

they are thus not easily accessible by experimentally measuring

the fracture energy. The high degree of reversibility of the frac-

ture is thus related to a significant decoupling between the

mechanisms of creation of new gel/air interfaces (which dominate

the energetics) and the mechanisms of network bond breaking on

the polymer scale (which determine the time scales for crack

propagation).

The paper is organized as follow. Section 2 is devoted to

materials and methods. The time resolved analysis of the fracture

profiles is reported in section 3. Section 4 presents a review of the

viscoelastic trumpet model of de Gennes for a Maxwell fluid and
Soft Matter
its tentative extension to the hyperelastic case. In section 5,

a simple theoretical approach is proposed to understand

the velocity of fracture propagation. Finally, in section 6, the

experimental results are discussed in the framework of the

models developed in sections 4 and 5.
2 Materials and methods

2.1 Description of the transient network gel

The system we used is composed of an oil-in-water droplet

microemulsion to which telechelic polymers are added (Fig. 1).

This system was previously described by Filali et al.23 The o/w

microemulsion involves a cationic surfactant, cetyl-pyridinium

chloride CPCl, and a cosurfactant n-octanol. The droplets are

swollen with decane and dispersed in 0.2 M NaCl brine. The

droplets are spheres of radius b ¼ 62 �A and were found to be

robust to variations of both the microemulsion concentration

and of the amount of added polymer.23The volume fraction in oil

droplets is fixed to f ¼ 10%. The polymer chains (Poly-ethylene

oxide) of molecular weight 10 kDa are grafted at both ends with

aliphatic chains of eighteen CH2 groups. After modification, the

degrees of substitution of the hydroxyl groups were determined

by NMR and were found to be larger than 98%. These hydro-

phobic end groups (stickers) anchor reversibly into the micro-

emulsion droplets. The polymer amount is represented by the

apparent connectivity R, i.e. the average number of hydrophobic

stickers per droplet. Far above the percolation threshold this

model system behaves as an elastic network with a shear modulus

mN ¼ nkBT (n is the number density of linking chains, kB the

Boltzman’s constant, T the temperature).18 In this regime the

connectivity is higher than 5. In this study we use two fluids with

the connectivity equal to 6 and 12. In the following, we named

those fluids R6 and R12.
2.2 Rheological properties

The linear properties of all the samples are Maxwellian18 (Fig. 2).

The elastic shear modulus mN is controlled by the density of the
This journal is ª The Royal Society of Chemistry 2011
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active polymer and the terminal time s is determined by the

average residence time of the hydrophobic stickers in the oil

droplets. Since the material is incompressible, which implies that

its Poisson ratio is n ¼ 0.5, the Young modulus is EN ¼ 3mN. All

the rheological measurements were performed with an RFS III

controlled-strain rheometer at 23 �C. The shear modulus and the

relaxation time are, respectively, equal to 330 Pa and 0.6 s for R6,

and 2400 Pa and 2 s for R12.
Fig. 3 A sequence of images of the fall of the R6 fluid. Regime 1

corresponds to images a and b and regime 2 corresponds to images c to g.

At the beginning of regime 2 we define the radius of the filament R* ¼
D*/2 and L0, the length of the drop. The white scale bar corresponds to

2.5 mm.
2.3 Fracture experiments

We carried out pendant drop experiments with our fluid. This

very simple test allows us to get a pure elongational flow, without

the influence of a solid surface on the flow properties as is the case

in the gap of an extensional rheometer. A syringe pump (KDS

200 from KD Scientific, USA) was used to form the drops with

a fixed volume of 50 ml at a constant rate of 2 ml h�1 for both

fluids. The material, initially in the syringe, flows through a lower

plastic tube of a diameter of 2.596 mm and a drop emerges at the

tube outlet that is enclosed in a glass box to reduce air currents.

These conditions ensure that no elastic instability modifies the

extensional flow while the drop starts to form underneath the

tube. All the experiments were performed at room temperature

of 23 �C. We use regular image analysis to determine the length

and the radius of the drop. We also use a fast camera (Photron

FastCam PCI CCD camera) equipped with a macro lens to study

the fracture propagation with a pixel size resolution of 8� 8 mm2.

The images were analyzed using NIH ImageJ (NIH, freely

available for download at the ImageJ website URL: http://rsb.

info.nih.gov/ij/). The fracture movies have been selected in such

a way that the fracture propagates in a plane perpendicular to the

camera direction. However, in most of the experiments the crack

may nucleate everywhere around the filament and then the

fracture propagates in a plane which is not orthogonal to the

camera direction. Approximately 50 experiments were per-

formed for each fluid in order to meet the orthogonality condi-

tion in a couple of cases where the fracture profile was then

analyzed. We got the critical stress at the rupture of the drop sf in

the following way. We measured the diameter D0 of the drop

where the fracture occurs and we weighted the mass of the falling

part with the help of a laboratory balance of accuracy 1 mg (TP

303 Denver Instrument, Germany) placed underneath the injec-

tion set-up. In this condition the stress is measured with a preci-

sion of 5%. Finally the stress at the rupture is equal to sf ¼
mg/(pR2

rupture)� 2gs/D0 with gs/D0 the radial stress corresponding

to the Laplace pressure and mg/(pR2
rupture) is the tensile stress

corresponding to the weight of the failing part of the drop at the

rupture.
Fig. 4 The minimum radius R along the filament versus time for the R6

fluid (crosses). The letters on the graph corresponds to the labels on the

images of Fig. 3. The black line corresponds to the fit of the data by the

formula defined by Stokes for the purely viscous fall,24 with L0 ¼ 5.25,

tv ¼ 15.57 s and R* ¼ 0.84 mm. The variation of the deformation rate

against the time left to break-up (tv � t) deduced from this formula is

plotted in the inset. The dashed cross corresponds to the moment where

the fracture occurs.
3 Results

The sequence of images in Fig. 3 shows the evolution of the drop

under gravity from its formation to the final break-up for the R6

fluid. After the injection of the fluid there is the formation of

a drop followed by the stretching of the filament by the falling

drop. The flow can be separated in two regimes. In the first

regime, the drop of fluid begins to fall when its weight exceeds the

surface tension retaining force. This balance of forces determines

the length scale of the drop, which is about 2 mm. The resulting
This journal is ª The Royal Society of Chemistry 2011
flow results from the balance between the surface tension, the

viscous force and the weight (Fig. 3a and b). In a second regime

(Fig. 3 images c to g), the filament is stretched by the falling drop,

whose shape remains approximately constant and is parabolic.

In this regime, the drop has an initial length L0 and the initial

radius of the filament is R* (Fig. 3c).

In the following, we suppose that inertia is negligible because

we work with very viscous fluids (Reynolds number is of the

order of 0.01). The filament is assumed to be a cylinder in an

extensional flow, assuming that there is no flow from the filament

into the drop. The evolution of the radius R, normalized by R*,

with time in regime 2 and the corresponding sequence of images

of the fall are very similar to those predicted by the inertialess

slender-drop theory and finite element computation of Stokes

et al.24 (cf. Fig. 4). The filament thinning is rather slow and its

dynamics can be described by a simple balance between the

viscous and gravitational forces, the surface tension

being neglected. The variation of the radius filament is given by
Soft Matter
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R(t) ¼ R*(1 � t/2tv)
1/2 with tv ¼ 3h/(rgL0). L0 is the initial length

of the drop in the second regime, r is the mass density and g

gravity’s acceleration (cf. Fig. 4). Most of the thinning process of

the filament takes place during this viscous fall for R* down to

0.2R*. For smaller radii there is a fast rupture of the filament

(Fig. 3g), described in detail later on, corresponding to the

fracture propagation. From the above expression of the time

evolution of the radius we calculate the deformation rate, _3 ¼
�2/R(dR/dt)(see inset of Fig. 4). In this way, we get the defor-

mation rate when the fracture starts to propagate, which is equal

to 1 s�1 and 0.06 s�1 for R6 and R12 fluids, respectively. It is

interesting to notice that elastic effects do not affect the time

variation of the radius of the filament for t > s25 and so are not

visible in Fig.4 because s ¼ 0.6 s. The total duration of the fall

before the opening of a crack is typically on the order of 50 to

200 s, much larger than the relaxation time of the Maxwell

fluid s ( 1 s. The tensile stress increases because of the decrease

of R(t), until a crack nucleates at the surface of the filament for

a critical stress sf x 0.5E.12 Then the fracture propagates across

the sample and eventually leads to the rupture of the drop

(Fig. 5a). In the experiments presented here, the fracture mech-

anism is a two step process. It has been shown in a previous

paper,12 that the first step consists of a spontaneous nucleation
Fig. 5 (a) Pictures of the propagation of the fracture across sample R6

from the right to the left. The time left to achieve complete fracture of the

filament corresponding to each picture labelled with a letter is:

a (8.50 ms), b (5.16 ms), c (2.67 ms), d (2.00 ms), e (1.00 ms), f (0.33 ms), g

(0.17 ms) and h (0.ms). The last picture on the right shows almost all of

the elongated drop, with the crack being well developed. The white scale

bar corresponds to 0.1 mm. (b) Fracture profiles u(x) for different times

before the break-up in the fracture moving frame, corresponding to the

pictures of the part a of this figure. The black line is a parabolic fit cor-

responding to eqns (1) and (2) with J¼ 2gs. We report only the profile for

L < 0.1D0.

Soft Matter
(thermally activated crack) of a microcrack within the oil

droplet/telechelic polymers network, the microcrack being filled

up with solvent. In the following we discuss in detail the second

step, which corresponds to the destabilization of the capillary

bridge and the propagation of a dry fracture through the

material.

It is worth noting that from the beginning of the propagation

up to the complete fracture (i.e., when the sample is separated in

two parts) the fracture profile exhibits a parabolic shape (Fig. 5a)

as expected for an elastic solid breaking under tension. These

observations were confirmed by quantitative analysis of the

fracture profile u(x) on the overall crack propagation across the

sample. Different fracture profiles measured in the fracture

moving frame and a parabolic fit

uðxÞ ¼ a
ffiffiffi
x

p
(1)

are represented in Fig. 5b.

We could be tempted to interpret this parabolic shape

according to the linear elastic fracture mechanics solutions:26

uðxÞ ¼ KI

E
0

ffiffiffiffiffiffi
8x

p

r

where the (local) stress intensity factor KI can be bound to the

strain energy release rate by G ¼ K2
I/E(1 � n2), but in soft solids

the crack tip region exhibits very large deformations that require

the use of finite elasticity theories.27 The finite elasticity

formalism for crack tip stress and displacement fields in a Neo-

Hookean solid is developed in the Appendix 1 for a 2D plane

strain problem. The nonlinear character of the problem requires

the fracture energy to be estimated by the J-integral method28

(the method is summarized in Appendix 1) and it can be related

to the parameter a of the parabolic crack opening profile by:

J ¼ pmNa
2

4
(2)

One of the main aims of the present work will be to show that

finite elasticity fully describes the behavior of our gel during this

rapid fracture experiment (cf. sections 4 and 6). This local esti-

mation of the J-integral thus also provides an estimate of the

strain energy release rate G ¼ J.

We stress the point that the use of eqn (2) essentially assumes

a 2D symmetry of the crack profile, which is not realistic in the

case of a cylindrical filament. However, since the movie has been

selected in order to present an excellent orthogonality between

the camera orientation and the direction of crack propagation,

the observed opening profile provides a good local estimate

of the fracture energy, the measurement being more accurate for

shorter cracks.

The variation of the estimated fracture energy G and the

measured length of fracture L as a function of the time to rupture

trupt� t are represented in Fig. 6. Two distinct regimes are clearly

evident depending on the length of the crack:

(i) for L < 0.1D0, both the fracture energy and the crack speed

remain almost constant with values roughly equal to G z
90 mJ m�2 andV¼ 4 mm s�1. It turns out that the estimated value

for G is roughly twice the surface tension gs x 45 mJ m�2 of the

solvent, i.e. the stabilised oil-in-water droplet microemulsion

without telechelic polymers. We remark firstly that the surface

energy needed to pull-out the hydrophobic stickers from the oil
This journal is ª The Royal Society of Chemistry 2011

http://dx.doi.org/10.1039/c1sm06024d


Fig. 6 (a) Fracture energy versus the time before complete fracture

trupt � t for R6 (filled circles) and R12 (unfilled circles) fluids. The letters

still correspond to the picture in Fig. 5a associated with the R6 fluid

fracture. The dotted line corresponds to G ¼ 2gs. (b) Evolution of the

total length of the fracture L (D0 � L in the graph) with the time before

complete fracture trupt � t. The legend is the same as for part a. The

diameter of the filament when the crack occurs at the surface of the

material D0 is equal to 0.584 and 0.407 mm for R6 and R12 fluids,

respectively. The dotted lines correspond to the linear fit of the data

which gives a constant crack speed V ¼ dL/dt ¼ (4.00 � 0.02) mm s�1.
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droplet gpol, of the order of 10 mNm�1 12 is completely negligible.

Secondly, the relation G z 2gs strongly supports the proposal

that there is no significant dissipative contribution in the crack

tip region. In this regime the crack speed is also constant and is

roughly equal to 4 mm s�1 (Fig. 6b)

(ii) for L > 0.1D0, the estimated fracture energy and the crack

speed increase when we go closer to the complete break-up of the

filament. It’s worth noting that the results concerning G must be

interpreted with caution as the finite size effect may be important.

It is then questionable whether the use of eqn (2), valid for a 2D

plane strain geometry, is still justified.
4 Hyperelastic correction of the trumpet model for
the fracture in a Maxwell fluid

In order to provide a rationale for the presented behaviour, we

propose here a development of the de Gennes model of the
This journal is ª The Royal Society of Chemistry 2011
viscoelastic trumpet,17,29,30 which presents a qualitative theoret-

ical analysis of the dissipative processes during the bulk fracture

in a viscoelastic material. This model was initially conceived to

explain at the level of scaling laws the remarkable relation

between the fracture energy per unit area G(V) at crack velocity

V and G0, the limiting value of the fracture energy at zero crack

rate that was reported for elastomeric materials:2,3

G(V) ¼ G0 + GV(V) ¼ G0(1 + f(aTV)) (3)

where aT is the temperature shift factor given by the Williams-

Landel-Ferry equation.31

A similar argument can be used to express the fracture energy

for a fracture of length L(t) moving at velocity V. The trumpet

model predicts the following scaling form for the dissipated

energy term GV(V):

GV ðVÞxT _S

V
x

1

V

Z 

dxdys _g ¼ 1

V

Z 

dxdyRe

�
s _g �
2

�

¼ 1

V

Z 

rdr
s 2

0

2

um00ðuÞ
m0ðuÞ2þm00ðuÞ2

�����
�����
u¼V=r

(4)

where the complex strain g is related to the complex stress s

through g ¼ s =mðuÞ and the distance to the crack tip r is related

to the frequencies of the excitation u by the scaling relation

u(r) ¼ V/r. T is the temperature, _S is the entropy creation rate

and s0 ¼ js j.
The complex modulus m(u) of a Maxwell fluid as function of

frequency is the following:

mðuÞ ¼ m0ðuÞ þ im
0 0 ðuÞ ¼ mN

ius
1þ ius

(5)

At low frequency (us� 1), the modulus is purely imaginary (m¼
iumNs) and the material behaves as a liquid of viscosity h¼ mNs.
At high frequency (us [ 1) we are dealing with an elastic solid

of elastic modulus m z mN. So from eqns (4) and (5), one gets

m00ðuÞ
m0ðuÞ2þm00ðuÞ2 ¼

1

mNus
(6)

Putting eqn (6) into (4) one gets

GV ðVÞ ¼ V

2mNs

ðumax

umin

s2
0

du

u3
(7)

where the limiting values umin ¼ V/L and umax ¼ V/l define the

range of frequency over which the material is excited, l being the

length of a small microscopic nonlinear zone, typically on the

order of 100 �A17 (see Fig. 7).
4.1 Linear elastic case

de Gennes analysis is founded on the consideration that for

a viscoelastic medium, the scaling law for the stress s as a func-

tion of the distance r from the crack tip is still equivalent to that

which we have for a steadily growing mode I interface in plane

stress or plane strain in an elastic medium

sxKI=
ffiffi
r

p
zKI

ffiffiffiffiffiffiffiffiffiffi
u=V

p
, where KI is the applied stress intensity

factor, and G0 ¼ K2
I/mN is the fracture energy that would be
Soft Matter
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Fig. 7 A schematic representation of the space and time scales associ-

ated to a crack of length L moving with velocity V in a Maxwell fluid

according to the trumpet model.17 A small microscopic nonlinear zone of

length l is represented in black. The behaviour of the material is solid like

at scales smaller than Vs, then fluid like at larger scales.
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present in an elastic medium under the same conditions. Eqn (7)

for the dissipated energy thus reads:

GV ðVÞ ¼ K2
I

mNs

�
1

umin

� 1

umax

�
¼ G0

L� ‘

Vs
xG0

L

Vs
(8)

And so, if L < Vs, then (G(V)� G0)/G0 x L/Vs < 1, and the bulk

viscous dissipation is negligible. It is convenient to express this

characteristic ratio as:

L

Vs
¼ t

�

s
(9)

where t* ¼ L/V is the characteristic time of propagation of

a crack of length L at the velocity V. The condition for neglecting

dissipation just reads t* < s: the characteristic time needed to

create a crack of length L is smaller than the relaxation time of

the viscoelastic fluid.

For a simple Maxwell fluid exhibiting a crack propagation we

can distinguish three spatial regions with different properties

corresponding to three regimes of frequencies:

(i) 0 < x < l: directly ahead of the crack tip there is a small

microscopic nonlinear zone of length l, independent of the

separation rate, where the fracture process leads to the termG0 of

the fracture energy in eqn (3).

(ii) l < x < Vs: in this region, the complex modulus is essen-

tially real (m(u) z mN), the viscous dissipation is negligible and

the material can be considered as an elastic solid.

(iii) Vs < x < L(t): in this region, the complex modulus is

essentially imaginary (m(u) z iumNs) and the material can be

viewed as a Newtonian liquid of viscosity h ¼ mNs. Only this

region contributes to the bulk viscoelastic dissipation processes.

From this model several interesting features appear:

(i) The characteristic value G0 of the fracture energy is gov-

erned by the small nonlinear zone of size l near the crack tip and

equals the Dupr�e work G0¼ 2gs needed to cut the material in air,

gs being the surface tension of the fluid.

(ii) If the fracture length is small (l < L(t) < Vs), according to

eqn (8) viscous dissipation does not occur and G(V) ¼ G0. This
Soft Matter
regime takes place at short propagation times t* < s and can

constitute the whole crack propagation if there is some maximal

cut-off for the fracture length Lmax < Vs, as is the case for the

filament rupture experiment reported in this paper, where Lmax¼
D0z 600 mm is the diameter of the filament just before failure. In

this purely elastic regime of the fracture propagation, where the

viscous region does not appear because of the finite size of the

sample, the profile u(x) of the fracture should be parabolic,28 and

should not depend on the rate of propagation of the fracture.

(iii) Viscous dissipation will occur only if Lmax > Vs. In this

regime, eqn (8) shows that G(V) > G0, provided that l remains

small with respect to the sample dimension. In this zone (Vs <

x < L(t)), de Gennes has shown that the scaling form s� x�1/2 for

the stress components remains valid for a viscoelastic medium

leading to the expected profile u(x) � x3/2. The sign change in the

concavity of the fracture profile at x � Vs is at the origin of the

name ‘‘trumpet’’ for this model. Such a trumpet profile has been

experimentally observed for adhesive fractures in polymer

melts.17
4.2 Hyperelastic case

The crack tip stress singularity mathematically implies very large

strains in a region close to the crack tip with a characteristic size

Rtip � G0/mN that questions the application of linear elasticity to

fracture mechanics.27 For most materials this region is smaller

than the fracture process zone and is thus not relevant. However,

for very soft materials this region can become significant and

must be taken into account. Four our gels it should be in the 100

mm range, which is large compared to the small cohesive zone l

and it is of the same order of magnitude as the characteristic

diameter of the breaking gel filament. We discuss in this section

the generalization of the de Gennes argument to the estimation

of the dissipated energy in the hyperelastic case.

The crack tip solutions for plane strain finite elasticity are

discussed in Appendix 1, as well as the computation of the J

integral. When considering the scaling of the true Cauchy stress

s(C) (eqn (34)), which is the most physically relevant description

of stress, we remark that the stress components present different

scaling relations as a function of the distance r from the crack tip,

notably r0, r�1/2and r�1. The second one is the same as in the linear

elastic case. At the level of the scaling law analysis of the trumpet

model, and omitting all numerical prefactors, we can estimate the

contributions of each component of the Cauchy stress tensor to

the dissipated energy from eqns (7) and (34).

The r0 component s(C)
11 gives the contribution G(11)

V (V) to the

viscous dissipated energy:

G
ð11Þ
V ðVÞ � V

2mNs

ðumax

umin

�
s
ðCÞ
11

	2du

u3
x

L2mNC
4

Vs
(10)

where, as discussed in Appendix 1, Cz 1and the scaling of the J

integral is J x mNa2 (eqn (2)). We can thus rewrite eqn (10) as:

G
ð11Þ
V ðVÞ
J

� L

a2
L

Vs
¼ L

Rtip

t�

s
(11)

where Rtip � J/mN x a2 is the radius of curvature of the crack tip

and t* ¼ L/V is the characteristic time of propagation of a crack

of length L at the velocity V. Since in our experiments Rtip is
This journal is ª The Royal Society of Chemistry 2011
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Fig. 8 A cartoon of the viscous relaxation mechanism of a bead at the

tip of the fracture. The polymer bridge between beads (1) and (2) just

debonded, forming a loop on bead (2). Bead (1) thus experiences the

spring-back force f(t) due to the gel under tension; this will lead to an

increasing extra tension on bead (3) and crack propagation at velocity V.
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comparable with L and the fracture propagation time t* is much

shorter than the relaxation time s, the energy dissipation origi-

nating from this term can be considered as negligible in front of

the surface energy term J ¼ 2gs.

The r�1/2 component s(C)
12 gives the contribution G(12)

V (V) to the

viscous dissipated energy:

G
ð12Þ
V ðVÞ � V

2mNs

ðumax

umin

�
s
ðCÞ
12

	2 du

u3
x J

t
�

s
(12)

We recover the prediction of the trumpet model for the linear

case where J ¼ G0.

The r�1 component s(C)
22 gives the contribution G(22)

V (V) to the

viscous dissipated energy:

G
ð22Þ
V ðVÞ � V

2mNs

ðumax

umin

�
s
ðCÞ
22

	
2 du

u3
x

mNa
4

s
ln
L

l
(13)

By using (31) again, we can derive the scaling law from (13):

G
ð22Þ
V ðVÞ
J

� J

mNVs
ln
L

l
� Rtip

Vs
ln
L

l
� Rtip

L

t
�

s
ln
L

l
(14)

Once again this dissipated energy is negligible in our experiments

sinceRtip is comparable with L and the fracture propagation time

t* is much shorter than the relaxation time s. Note however the

low logarithmic dependence of G22
V (V) with L.

We remark that the necessary conditions for neglecting bulk

viscous dissipations in the fracture energy of a Maxwell fluid are

more restrictive in the hyperelastic regime than in the simple

elastic linear case. Eqns (11), (12) and (13) show that the main

condition for neglecting bulk viscous dissipation is that the

characteristic time t* of the opening of crack of length L should

much smaller that the relaxation time of the Maxwell fluid s, as it
is in the simple elastic linear regime. However, a new length scale

Rtip � J/mN � a2 – the radius of curvature of the crack tip, or

equivalently the size of the large strain region – becomes relevant.

The dissipated energy can sensibly be neglected only when the

length of the crack is of the same order of magnitude than Rtip as

in our experiments. For very short cracks (L < Rtip) eqn (14)

predicts the term G(22)
V to become important, while for longer

cracks (Rtip < L < Vs) eqn (11) predicts the term G(11)
V to become

important.
5 Microscopic model for the fracture velocity

In the following we will only focus on the first regime, where both

the fracture energy G and the crack velocity V are constant in

time (L ( 0.1D0) and also take approximately the same value

V�mm s�1 in the two fluids R6 and R12 (Fig. 6). We remark that

V� cR, cRz
ffiffiffiffiffiffiffiffiffiffiffiffi
mN=r

p
(of the order of 1 m s�1) being the speed of

sound in the medium. What is the mechanism that explains this

low speed propagation?

Basically, we argue that the scaling of the velocity V of the

fracture is given by the characteristic speed of relaxation of

a microemulsion droplet at the opening crack interface, under

the action of the unbalanced elastic force of the polymer bridge

towards the gel (Fig. 8). This velocity is given by balancing the

elastic force and the viscous drag force acting on the droplet

(Reynolds number Re � 1).
This journal is ª The Royal Society of Chemistry 2011
Just before the bead at the tip of the fracture is released (at

time t ¼ 0) by the debonding of a polymer bridge, it is submitted

to the normal force:

f0 ¼ sid
2
0

li
(15)

where li ¼ di/d0 is the elongation of the network at the crack tip,

d0 is the mean distance between droplets at rest (d0 x (4pf/3)1/

3b), hW is the viscosity of the water and si is the local normal

stress at the tip of the fracture. Note that eqn (15) assumes the

incompressibility of the gel. For t > 0, the bead experiences the

following springback force due to the gel under tension (Fig.8):

f ðtÞ ¼ sðtÞd2
0

lðtÞ (16)

From the relationship between s(t) and l(t)¼ d(t)/d0 given by the

affine network model of the unentangled rubber elasticity

theory,32 one gets:

f ðtÞ ¼ Ed2
0

3

�
lðtÞ � 1

l2ðtÞ

�
(17)

The size of the bead is submicrometric, and so its motion in water

obeys the Stokes law:

6phWbd0
dl

dt
¼ f ðtÞ (18)

where hW is the viscosity of water. Substituting (17) in (18) and

integrating the obtained differential equation with the initial

condition given by (15) gives:

l(t) ¼ [1 + (l3i � 1)exp(�t/s1)]1/3 (19)

with a characteristic time
Soft Matter
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s1 ¼ 6phWR

Ed0
(20)

To obtain the characteristic fracture velocity, one can estimate

that the next bead will debond (causing the growth of the fracture

of length d0/li) when l ¼ fdli, where l�1
i # fd # 1 is a critical

elongation felt by the chain on the next bonded bead, that is

difficult to estimate. Indeed, the relaxation of the debonded bead

induces extra elastic tensions on the next bead at the tip of the

fracture that will grow with time. The time necessary to reach this

critical elongation is then according to eqn (19):

tp ¼ s1ln

"
l3i

fdl
3
i � 1

#
(21)

The time scale is thus given by eqn (21) with logarithmic

corrections. Finally the fracture velocity is:

V ¼ d0ffiffiffiffi
li

p 1

tp
¼ Ed2

0

6phwb

" ffiffiffiffi
li

p
ln

�
l3i � 1

fdl
3
i � 1

�#�1

(22)

The function g: li/

� ffiffiffiffi
li

p
ln

�
l3i � 1

f 3d l
3
i � 1

���1

exhibits a maximum

whose position and value depend on fd and determines an upper

bound for the fracture velocity. We choose fd ¼ 0.5. Indeed 2 <

li < 8 (li ¼ 2corresponds roughly to the maximal macroscopic

elongation for the network experimentally observed before

rupture occurs in pendant drop experiments and li y 833

corresponds to the maximal elongation usually observed in

permanent rubbers), one gets max(g) ¼ a ¼ 0.25. We note that

max(g) is a decreasing function of fd. So the choice fd ¼ 0.5 will

give the upper limit for the estimation of the crack velocity:

V ( 0:25
Ed2

0

6phWb
(23)

6 Discussion of the experimental results

For the fluids R6 and R12, the relaxation time s is, respectively,
0.6 and 2 s. The upper bound value of the crack length is the

initial diameter D0 ¼ 0.6 mm of the filament when the rupture

process begins, that is L(t) < 0.6 mm. The crack velocity was

found to be constant at V x 4 mm s�1. For both fluids, the

characteristic time of a fracture event t* < 0.15 s. The condition

(t*/s) < 1 is thus fulfilled (note that in fact, as discussed in section

3, the experimental analysis we did is valid for L < 0.1D0 so that

t*/s < 0.025). The radius of curvature of the crack tip is given,

respectively, by Rtip ¼ a2/2x174 and 24 mm, which are of the

same order of magnitude as the observed crack lengths.

Therefore the response of the material is completely elastic

(L < Vs), the size of the sample being too small or, equivalently,

the time necessary to fracture the filament is to small (t* < s) to
see any viscous dissipation on the overall rupture phenomenon.

The fracture energy is thus expected to be independent of crack

speed and to equal G0 ¼ 2g ¼ 2(gs + gpol). The first term is the

classical Dupr�e work needed to form two new air/gel surfaces

(dry fracture). However, before dry fracture occurs by instability

of the capillary bridge, the wet fracture must have already

occurred and its interfacial cost is 2gpol. As reported in a previous

work,12 this term of purely entropic origin is related to the loss of

conformational entropy of polymer chains at the crack surface
Soft Matter
gpol x (ln2/2)kBTN
2/3
P , where NP z 3fr/8pb3 is the number

density of polymer chains in the sample (cf. Fig. 1). This inter-

facial tension is extremely low and roughly equal to 10 mN m�1

and is thus negligible compared to the air/gel interfacial tension

gs x 45 mN m�1. It has been proved that for many systems G0

exhibits a marked dependence on V, and most of the rate

dependence of G(V) then originates from the rate dependence of

G0 itself.34 Raphael and de Gennes35 have shown theoretically

that the surface energy required to debond the connectors

between two surfaces is indeed velocity dependent. However, in

our fluid this argument would apply to the component gpol which

is negligible in front of the dominant term gs, thus resulting in

a substantial independence of G0 from V.

Although the condition L < Vs is respected throughout the

experiment, the trumpet model can only accurately describe the

first observed regime of crack propagation where L < 0.1D0. This

is not surprising, since the modeling is relative to the fracture

propagation in a semi-infinite medium. The second regime for

L > 0.1D0 must clearly be attributed to the finite size of the soft

filament and to the increasing value of the strain in the

progressively thinning ligament (cf. Fig. 5) leading to the

progressive failure of the rough 2D approximation. The increase

of G for long cracks could partially be caused by the hyperelastic

dissipation term G(11)
V predicted by eqn (11), but a more accurate

mechanical modelling would be needed to explore this

possibility.

For both R6 and R12 fluids, the value of the crack velocity

fluid (V ¼ 4mm s�1, Fig. 6) is in good agreement with inequality

(23) that gives V� 6 mm s�1 for a reasonable expected value a �
0.25. This strongly supports our hypothesis that the kinetics of

the crack propagation are governed by the elastic relaxation of

the oil droplets after a debonding event, under the action of the

viscous drag of the solvent. Note that the control of the crack

velocity by network/solvent friction has been already proposed

by Baumberger et al.4,36 in the viscoplastic fracture dynamics of

an other class of reversible gels, i.e. gelatin.
7 Conclusions

We performed an original experimental investigation of the

brittle fracture of a viscoelastic Maxwell fluid using a pendant

drop experiment. This configuration allows for an excellent

reproducibility of the fracture initiation and propagation, as well

as a pure elongational stress condition due to the lack of contact

with solid interfaces near the fracture region. The fracture of the

fluid happens in two steps. The fracture initiation step, discussed

in a previous work,12 was shown to be governed by the thermally

activated nucleation of a critical crack in the polymer network.

The second step, consisting in the rapid propagation of a brittle

fracture in the fluid, was analysed in detail here and shown to be

energetically governed by the surface tension of the solvent (oil-

in-water droplet microemulsion).

According to the viscoelastic trumpet model of de Gennes, the

absence of bulk viscous dissipation was justified by the short

length of the crack in relation to the characteristic length Vs
where the viscous dissipation starts to become effective. More-

over, an extension of the trumpet model to hyperlasticity has

allowed us to confirm the weakness of the dissipated energy in

terms of a new relevant length scale Rtip � G0/mN, which is found
This journal is ª The Royal Society of Chemistry 2011
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to be of the same order of magnitude as the observed crack

lengths. In agreement with this interpretation, the measured

crack opening profiles presented a constant parabolic shape,

which can be related by nonlinear fracture mechanics to a frac-

ture energy equalling the Dupr�e energy for the creation of the

two solvent surfaces G0 ¼ J ¼2 (gs + gpol) z 2gs. The fact that

the contribution of the polymer network to the surface tension of

the fluid is negligible, was shown to be the cause of the extreme

brittleness of the fracture propagation. In fact, the different

sources of local dissipation in the small nonlinear zone were

shown to be of the same order as gpol and are thus energetically

negligible during crack propagation.

On the other hand, the slow velocity of crack propagation

(Vz 4mm s�1�cR) was shown to be governed by the time scales

of the local crack tip debonding processes, and namely by the

elastic relaxation time of the oil droplets after a debonding event

under the action of the viscous drag of the solvent. The

remarkable properties of this original model system were thus

shown to be related to the excellent degree of uncoupling between

the energetic and kinetic properties of the fracture propagation,

due to the presence of a dominant solvent energy term in the

surface tension of the fluid.
Appendix 1: Large strain crack tip solutions in plane
strain condition

Let x and y be the coordinates of the physical points in the non

deformed and deformed frames according to:

y ¼ ŷ(x) ¼ x + u(x)

where u(x) is the displacement field (expressed in the non

deformed frame). The first order terms of the 2D plane strain

non-linear elastic solution for the crack tip fields in a Neo-

Hookean soft solid were provided by Stephenson:21

y1 ¼ �b2

a
rsin2 q

2
(24)

y2 ¼ a
ffiffi
r

p
sin

q

2
(25)

where y¼(y1,y2) and x¼(r,q), while a and b2 are two dimensioned

constants. The J integral is computed in the non deformed frame

according to:

J ¼ Ð
G3[Wn1 � sabnbua,1]ds (26)

where n!¼ ðn1; n2Þ ¼ ðcosq; sinqÞ is the normal vector to the

surface G3 (which is a circle of radius 3 around the crack tip, ds ¼
3dq is the length increment, s is the nominal Piola stress and the

elastic energy density function is:

WðIÞ ¼ m

2
ðI � 3Þ (27)

I ¼ tr(G)is the invariant of the left Cauchy–Green strain tensor

Gik ¼ FFT, where Fij ¼ yi,j is the deformation gradient.

According to Stephenson,21 the nominal Piola stress

(expressed in the non deformed frame) can be derived from:

s(P) ¼ 2W0(I)F � pF�T (28)
This journal is ª The Royal Society of Chemistry 2011
where p is the crack tip pressure field:

p ¼ �2mb

a2
cos

q

2
þ 2m

a2
rð3� cosqÞ þ oðrÞ (29)

For the computation of the J integral, we only need to retain

singular terms. Since the pressure field is bounded, the nominal

stress reduces to:

sðPÞ ¼ mF ¼ m

2
664

�b2

a
sin2 q

2
�b2

a
sin

q

2
cos

q

2

� a

2
ffiffi
r

p sin
q

2

a

2
ffiffi
r

p cos
q

2

3
775 (30)

J ¼
ð
Ge

sabnbua;1ds ¼ ma2

4

ð2p
0

1

e
esin2 q

2
dq ¼ pma2

4
(31)

The equations for the deformed crack profile (24 and 25) can be

combined to express the visual parabolic contour line of the

deformed crack lips:

y2 ¼ a

ffiffiffiffiffiffiffiffi�y1

C

r
(32)

where we defined the dimensionless coefficient C ¼ b2/a. Since C

is found to be close to 1 in the FE simulations especially in large

strain,20 we can directly relate the opening parameter of the

parabola to J by inverting (31):

a ¼
ffiffiffiffiffiffiffi
4J

pm

s
(33)

If we express the solutions for the true Cauchy stress tensor in the

non deformed frame:21

sðCÞ ¼ m

2
664

C2 � a

2
ffiffi
r

p sin
q

2

� a

2
ffiffi
r

p sin
q

2

a2

4r

3
775 (34)

we remark the different scaling of the components of the Cauchy

and Piola stress tensors. In particular the s(C)
11 term is bounded,

while the s(C)
22 presents a 1/r singularity. For the sake of estimating

physical scaling laws for the energy dissipation, the true Cauchy

stress is certainly the most relevant quantity.
Appendix 2: Viscous dissipation in the nonlinear zone
of the fracture

The debonding of a polymer bridge under tension leads to

a viscous dissipation due both to the motion of bead 3 in Fig. 8 in

the solvent and to the friction of the polymer bridge linking beads

1 and 3 with the solvent too. Both forms of dissipated energy will

be of the same order of magnitude, the polymer contribution

being even smaller since the hydrodynamic radius of the polymer

chain is RH � 4 nm < b.

We focus here to the viscous dissipation due to the motion of

a bead 3 in font of the fracture tip that will dissipate energy. The

corresponding energy cost has been already calculated in section

5:

Ed x
Ð
1
lif(t)d0dl (35)
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where f(t) is given by eqn (17). This leads to a dissipative

contribution to the fracture energy DG0:

DG0ðVÞz

Np=2

�2=3 Ed3
0

2
¼ 1

3
ðp=12Þ1=3 r

2=3bE

f1=3
(36)

where we have assumed that roughly half of the polymer chains

are in bridge configuration37 and that li ¼ 2. For the fluid R12

(f ¼ 10%, R ¼ 12), DG0(V) � 35 mJ m�2 �2gs, which is once

again of the same order as gpol and is thus negligible in front of

the dominant term 2gs.
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