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Abstract 
 

The fracture is a very complicated phenomenon and its dynamics is not well described, until 
today, by a consistent physical and/or mathematical model. In this paper we synthetically present 
the main experimental and theoretical results for the peeling of an adhesive tape, i.e. a viscoelastic 
dissipative system, viewed as a two dimensional fracture propagation. Varying the control 
parameter the crack dynamics appears stable in a first branch of the state curve, unstable in a second 
branch with stick-slip propagation, and finally again stable, but very rapid, in a third region. The 
unstable stick-slip dynamics becomes more and more irregular increasing the control parameter and 
exhibits different behaviors with transitions between periodic, aperiodic and disordered regimes. In 
an experiment recently performed at ESPCI-PMMH (Paris, France), the emergence of hierarchical 
structures in a broad range of time scales was observed in a definite region of the stick-slip regime, 
and this is one the indicators commonly used speaking of complex systems. At last, we underline 
that we do not still have a complete mathematical description of empirical data and that we lack a 
physical model able to explain the observed complex dynamics.  

 

Introduction 
 
Our physical world is no longer symbolized only by the stable and periodic orbits, with the 

harmonic oscillator and modes paradigm, that are at the heart of classical Newtonian mechanics. A 
new world of instabilities and fluctuations, which are ultimately responsible for the amazing variety 
and richness of the forms and structures that we see in nature, is included in the horizon of natural 
philosophy from about thirty years (Gallagher and Appenzeller, 1999). Surely, if we want to 
understand for example the nature of earthquakes, the weather variations, the growing of threes, the 
origin and the evolution of life, the reductionist paradigm, i.e. the explanation in terms of 
elementary components, is powerless. In a first qualitative sense, we can call this world “complex” 
and define “science of complexity” the set of experiments, models, theories, paradigms that 
contribute to study these phenomena. More precisely, three disciplines have modified our outlook 
on the physical world: statistical mechanics (in particular the non-equilibrium physics with phase 
transitions), the modern theory of dynamical systems, and the information theory, along with an 
exponential growth of the computer performance (Parisi, 1992; Livi et al., 1986). One of the more 
significant properties that characterize the complex physics is nonlinearity. Essentially, nonlinearity 
means that some effect (reaction) is not proportional to its cause (action) and therefore we cannot 
apply the superposition principle. This implies that the behavior of a considered system cannot be 
described in terms of elementary components, i.e. it cannot be studied as a “simple” system. 
Moreover, nonlinearity generally implies a great difficulty in solving the equations that represent 
the system. Even if we think that it would be possible to exactly know the initial conditions (and 
this is not the case, because the position for example is a real number, described by an infinite 
numeral succession, that means either an infinite time or an infinite quantity of information), 
usually nonlinear equations don’t have analytic solutions. Furthermore, the initial condition 
sensitivity which is proper to many systems, even with few degrees of freedom, produces very 
quickly a completely unpredictable time evolution of the system, despite its deterministic nature, 
and the orbits become chaotic. On the other hand, we have systems with a very large number of 
components that can be understood in a simple manner (for example a perfect gas) if we choose the 
right level of description (statistical and/or thermodynamical for the gas). Nonlinear processes are 
ubiquitous in nature and most phenomena can be studied in this “complex” optics, not only in 
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physics, but also in chemistry, biology, neuroscience and in fields outside natural science such as 
economy, sociology, psychology, and cognitive science (Nicolis and Prigogine, 1989). But what 
does it mean, in natural philosophy, complexity? In the literature one can find many different 
definitions, qualitative, philosophical, quantitative (for example the Kolmogorov algorithmic 
complexity), but, as befits its name, the science of complexity lacks a simple and univocal 
definition. In a generic sense, you can refer to systems that operate at the edge of chaos and/or that 
are in an intermediate state between perfect order and complete disorder (Livi et al, 1988). 
Notwithstanding these difficulties over formal definition, we have some properties and 
characteristics generally assumed as indicators of complexity: power laws, degree of mixing, 
entropy, thermodynamic functions, cellular automaton representations, etc (Peliti and Vulpiani, 
1987). But one of the most meaningful signatures of complexity is the presence of a hierarchical 
organization, i.e. the emergence of hierarchical structures over a range of scales. Furthermore, we 
will speak of self-organization (Yates, 1987) whenever the iteration of few basic rules produce the 
emergence of structures having features not shared by the rules themselves. It should be clear at this 
point that until today a “theory of complexity” does not exists. We do not have general principles or 
laws or equations underlying the whole complex world from which we can derive the behavior of 
the single specific complex system. Each complex system must be investigated in its proper way 
even if some features, equations and models as for example the strange attractors with fractal 
geometry, the logistic map with bifurcations, the cellular automata, the neural networks, can be 
applied to study different phenomena, physical, but also biological or human. At this step of our 
scientific understanding of the complex world, we could consider the “theory of complexity” a sort 
of theory of modeling, so defining heuristically a complex system as a system which is intrinsically 
hard to model, no matter which is its nature, physical or biological or another one, and no matter 
which mathematical or experimental tools are used (Badii and Politi, 1997). We underline that this 
heuristic approach does not give an answer to the fundamental question: why, if the basic physical 
laws are relatively simple, the world is full of so complicated phenomena? For example the fracture 
process, which is the object of our investigation in this work, is one of the most complicated 
phenomena of the physical world (Sethna et al., 2001). Fracture results of the interplay between the 
creation of new interfaces and the elastic deformation of the bulk material. While the creation of 
new interfaces is dominated by the properties of elasticity of the surrounding medium and the 
amount of accumulated strain energy, the constitutive properties of the medium are strongly 
affected by the fracture propagation. In the full three dimensional fracture of a brittle material 
(which is commonly referred to as “rupture”), the medium generally undergoes a progressive 
process of diffused damaging which then spontaneously concentrates into some region that is 
gradually crushed into fragments that slide and roll on each other, involving a great deal of different 
physical phenomena such as friction, adhesion, and plastic deformation (Atkinson, 1987; Scholz 
1990). Modeling such a complicated mixture of phenomena is almost hopeless even with the 
spreading power of modern computers (Main, 1996). Some simpler context must be chosen where a 
smaller number of phenomena are considered along with a simplified geometry. The peeling of an 
adhesive tape provides an excellent example since the phenomenon is reduced to the propagation of 
a single coherent fracture front along a predetermined bidimensional interface (Aubrey and Sheriff, 
1980). Moreover, the dissipative nature of the viscoelastic systems has the significant effect of 
stabilizing the fracture dynamics. Even with these simplifications, the phenomenon remains highly 
nonlinear and the dynamics shows a variety of instabilities and structures that suggest a possible 
underlying complexity. Furthermore, the peeling of an adhesive tape can be easily set up in 
experiments that provide very long data series from which it is possible to extract useful 
information on the nonlinear features of the system. A last remark is that the physics of complex 
systems is very young and some research programs that today seem fruitful might eventually in the 
future prove to be cul-de-sacs.  

1) The fracture dynamics and the peeling of an adhesive tape 
 
Many phenomena like materials failure, granular dynamics, earthquakes, convection in 

granular flow induced by vibrations, fracture dynamics and the peeling of an adhesive tape have 
generic nonlinear features. In particular, one of the essential characteristics common to all these 
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systems is that they require a threshold to initiate the dynamical process and this introduces a very 
strong nonlinearity. In this section we will focus on the crack propagation in elastic solids and 
viscoelastic systems, giving some general concepts and formulae to study the fracture dynamics, the 
peeling and the stick-slip regime (Barquins, 1994).  

The crack propagation in elastic solids is dissipative, usually irregular and accompanied by the 
emission of energy with characteristic noise (Maugis and Barquins, 1978). If we have two solids in 
contact and we want to describe the adhesion or separation between them (Figure 1), we can use the 
equation 

 
1221 γγγ −+=w           (1) 

 
where γ 1 and γ 2 represents the free surface energies, γ 12 the bound surface energy, and w  is the 
Dupré adhesion energy; obviously if 0>w  we have adhesion, i.e. some energy is needed for 
creating a free surface. The second relevant observable is the released energy; more precisely, the 

strain energy release rate 
A

UG M

∂
∂

= , i.e. the amount of mechanical energy MU∆  released by the 

system when the fracture surface advances of A∆ , for 0→∆A (we observe here that we have 
reduced the fracture problem to a bidimensional one).  
 

 
Figure 1 – Energy balance for the adhesion of two solids 
 
For  

 
wG =            (2) 

 
the crack is in an equilibrium state that can be stable or unstable if G  rises or drops following an 
hypothetical advancement of the fracture. When wG >  the crack propagates spontaneously giving 
rise to highly dissipative phenomena due to the elevated stress near the crack tip. As a result, a 
constant crack velocity is attained which is a function of the difference between G  and w . 
Equation (2) can thus be extended to the dynamic case by adding a dissipative term such as 

 
( ) ( )vv Φ=+= TawwG ϕ         (3) 

 
where v  is the crack velocity, ϕ  is a phenomenological relation that depends on the scaled velocity 

vTa , with Ta depending from temperature (following the WLF equation for viscoelasticity (Ferry, 
1980)). We underline that the dissipative term is proportional to the adhesion energy and that ϕ  
depends only on the temperature T and the crack velocity v . In this context we can trace a curve 

( )vΦ=G , that is represented in logarithmic scale in Figure 2. 
 

 
 
 
 

 

W SOLID 1

SOLID 2

SOLID 1

 
γ1 

SOLID 2

γ2 γ12 



 
4 

 

 
Figure 2 – Characteristic curve ( )vΦ=G  
 
This curve can be viewed as the superposition of a term representing surface and kinetic energy 

with G  monotonically increasing with v  and diverging at the limit Rayleigh wave velocity, and a 
broad peak due to viscoelastic losses. 

We refer to peeling when a thin adhesive film is separated from a rigid substrate. Peeling 
exhibits a rich and interesting dynamics with stable or unstable regimes, depending on the value of 
the control parameters. Two different types of peel tests are generally used to investigate the 
dynamics:  

a) the film is peeled apart from flat rigid substrate (Figure 3); 
b) the film is wound to a reel and the peeling is accompanied by rotation of the reel (Figure 4);  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 3 – A film of width b and thickness h is peeled apart from a flat rigid substrate. The 
force F makes an angle θ (peeling angle) with the rigid substrate. 
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Figure 4 - The film is wound to a reel of radius R rotating with an angular velocity ω . The 
apparent position of the fracture is indicated by the angle α.  V0 is the traction velocity at point 
O’ at a distance L from the fracture front. θ is the peel angle. 
 
In this paper we will discuss above all the second experimental fracture model. 
The relation between the fracture dynamics and peeling was established by Kendall (1975), 

which linked  the pull force F  applied to the free end of the film to the strain energy release rate G  
obtaining the equation:  

( )
Ehb

F
b
FG

2
1cos1

2







+−= ϑ         (4) 

 
(for the meaning of symbols see Figures 3 and 4, E  being the Young modulus). The first linear 
term is related to the geometric configuration, and the quadratic one derives from the strain energy 
of the new peeled film. The Kendall equation is well established since it derives from the 
conservation of energy and is furthermore confirmed by experiments. 

If we define ( )
x

UF M

∂
∂

=v0  as the adherence force, we can write 

 

( ) ( )
b

F
x

U
bA

UG MM v1v 0=
∂

∂
=

∂
∂

=Φ=      ⇒      ( ) ( )vv0 Φ= bF     (5) 

 
For the peeling angle o30>θ  (which is common in stick-slip dynamics) the equation (5) 

reduces to  
 

( )ϑcos1−=
b
FG     or     ( ) ( )ϑcos1v0 −= FF       (6) 

 
that relates univocally the adhesion force ( )v0F  to the pull force F . This is very important because 
we lack a direct knowledge of ( )v0F  and moreover we don’t have a microscopical model for it. The 
equation (6) is a sort of state equation, i.e. it was derived in equilibrium conditions. However, it is 
expected to work also if the evolution of the variables is not too rapid in relation to some 
characteristic time which is still not estimated. So its applications in highly dynamical conditions 
and in presence of strong nonlinearity is very delicate and probably not completely correct in order 
to describe the instability propagation.  

At last, the stick-slip (or run-arrest). We show a simple stick-slip model in Figure 5. The spring 
extremity A is pulled with constant velocity V  with dµ  and sµ  being respectively the dynamical 
and static friction coefficients. At t = 0, the mass m  is at rest (stick-state) and the spring is extended 
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proportionally with V . The static force is equal to kx  ( k  is the elastic constant, x the elongation of 
the spring) and increases with x  up to smgµ . At this point the slip begins obeying to the following 
equation: 

 
dmgkxxm µ=+&& ,   with   ( ) kmgx s /0 µ=  ,   ( ) Vx =0&        (7) 

 
the solution of which is  
 

( ) ( )[ ]
k

mgtVt
k

mgtx d
ds

µω
ω

ωµµ ++−= sencos ,   with   
m
k

=2ω  

 

 
Figure 5 – Spring block slider on a flat surface 
 
The mass arrests again for πω =t  (considering V  very small with respect to the slip speed) 

with kmgx sd /)2( µµ −= and we have a new stick phase. We can also calculate the characteristic 
times of slip SLIPT  and of stick STICKT : 

 

k
mTSLIP π=  ,     ( ) kVmgT dsSTICK /2 µµ −= ,    where SLIPSTICK TT >>    (8) 

 
The stick-slip is observed in a variety of phenomena like rock friction and earthquakes, or 

tearing of rubber and crack propagation in epoxy resins, etc. And also in the peeling of an adhesive 
tape. This intermittent motion (or self-sustained oscillations) is created by a mechanism that 
generates cycles of crack growth (or sliding) instability followed by subsequent arrest. The stability 
and instability alternation in peeling is produced by the competition between the change in the 
driving force (or energy release rate) and the change in the crack-growth resistance. In the next 
section we will describe some experiments performed in order to understand the peeling dynamics 
and we will give the main obtained results.  

 

2) The previous main experiments and the empirical results 
 
In general, the experiments on the peeling of an adhesive tape were performed utilizing two 

possible different set-ups. In the first the peeling was studied when a constant traction velocity 0V  is 
imposed onto the free end by the action of an electric motor (Figure 4). In this case, with a fixed 
geometry, 0V  is the only dynamical control parameter, and the limit between the adhesive tape 
ribbon and the free tape may be seen as a crack tip propagating with speed v. In a second type of 
experiment the peeling is studied when a constant applied load is clamped to its extremity (Figure 
7) and the control parameter is the imposed force. 

Barquins et al. (1986), Maugis and Barquins (1988), performed a series of experiments in the 
first above described setup. In these experiments an adhesive roller tape of radius R  was unwound 
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at a given linear velocity 0V  (up to 20 m/s) by a couplemeter motor allowing the peel force to be 
measured. In a modified version the winding roller was mounted on an elastic plate, the deflection 
of which was used to measure the peel force. The observed peeling dynamics exhibits the following 
behavior: at slow traction velocity the tape is peeled regularly and the dynamics is stationary; at 
high velocity the dynamics is also regular, but very rapid; in the intermediate range of 0V  a stick-
slip phenomenon appears, the peeling of the tape being jerky with emission of a characteristic noise. 
Moreover, an empirical ( )vG  curve was traced (Figure 6) showing that the strain-energy release 
rate varied as a power law of the crack velocity v: 

 
( ) 1v)(v nTwaw +=Φ       35.01 =n       for the first stable branch 

 

( )
2

1v
vv

n

CG 







=Φ             5.52 =n       for the second (rapid) stable branch. 

 

 
Figure 6 – Empirical ( )vG  curve from Barquins et al. 1986. 
 
In an experiment where the peeling was produced by a constant applied load (Barquins et al., 

1995 and figure 7) the first stable region was found to be actually metastable, an unexpected stick-
slip regime appears which was related to the inertia of the falling load, and the rapid stable branch 
was confirmed. The most relevant result was that the average value V  of the measured peeling 
velocity remains approximately constant increasing the value of the load of one order of magnitude 
(Figure 8). 
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Figure 7 – Experimental set up for the peeling at constant load. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 - Empirical ( )vG  curve from Barquins et al., 1995 with vertical stick-slip branch at 

constant average velocity. 
 
Obviously, in all these experiments, we must consider some influences due to temperature and 

humidity. Our adhesive tape is substantially composed by polymer melts, made of long flexible 
molecules that naturally provide the properties of sticky materials: under stress, at long time scales, 
they have the properties of viscous liquids, and at short time scales they deform as elastic solids. As 
it is well known, they depend strongly on temperature, especially near the glass transition 
temperature (Ferry, 1980) when the polymer transforms progressively from a viscous material to a 
solid. But we want to study the fracture propagation and not the phase transition of the system; if 
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temperature and humidity don’t change too drastically, they don’t affect the dynamics in a 
significant way. More precisely, since the stick-slip dynamics is very fast (the slowest cycles have a 
period of 1 s), it is not affected by long term environment variations, and even the long series of 
events are taken in substantially unchanged conditions. However, an effort must be spent in order to 
provide similar conditions between different series of experiments.  

 
 

3) The modelling 
 
As a matter of fact, if one observes finely the macroscopic fracture line, he discovers that it is 

composed by a huge number of microfractures and microfilaments, but at present a microscopic 
model for the adhesion force and the crack in a viscoelastic system does not exist. This is the main 
difficulty in order to give a deep physical interpretation of the investigated phenomenon, i.e. to 
understand, describe and explain the fracture evolution. So we are constrained at the macroscopic 
level and generally the authors model the system by means of dynamical equations.  

The first model (Barquins et al, 1986) only takes into account the elastic degree of freedom, 
writing the equation: 

 

( )0V-v
b
kG −=&            with 

2
πθ =  ,   

b
k

L
Eh

b
FG δδ

===Φ= )v(     (9) 

 
where δ is the elongation of the free portion of the adhesive tape. The equation (9) explains the 
stable branches of the curve G(v), where the fixed points are v = V0 , )( 0VG Φ= , but it is not able to 
describe the stick-slip domain, unless speed jumps are artificially introduced. A common method to 
model the dynamical systems which have an unstable and/or irregular behavior is increasing the 
number of degrees of freedom. Following this, a second step was to add the roller inertia (Maugis, 

1987; Maugis and Barquins, 1988). If we assume 
A

UG k

∂
∂

−Φ= )v( , 2

2
1 ωIU k =  , with I momentum 

of inertia, we can write the equations: 
 

( )

( )[ ]







Φ−=

−=

v
m
bv

V-v 0

G
b
kG

&

&

       with 
2
πθ =  and  2R

Im =      (10) 

 
which represents a two variable model. Choosing [ ])(, 00 VV Φ  as the origin and letting 0V-v=x  

we can write ( ) ( )0v)( VxF Φ−Φ=  , 
x
Fxf

∂
∂

=)(  and so the equation (10) becomes the well known 

Lienard equation:  
 

0)( 2 =++ xxxfx ωµω &&&        (11) 
 
which typically has limit cycles in the branch with negative slope. By linearization one obtains 

Hopf bifurcation at points A and C (see fig 9(a)) where stable stationary equilibrium gives way to 
limit cycles (see Figure 9(b)). In figure 10 we can see that increasing the value of the control 
parameter V0 the orbits go out of the quadrant, i.e. the solutions are not physical (Lunedei, 2001). 
More precisely, the two variable model produces results fitting the experimental data only when 
applied to the initial part of the stick-slip region where the phenomenon is periodic. But when 
increasing the traction velocity the self-sustained oscillations become more and more irregular, our 
equations (10,11) are unable to describe and to predict the observed behavior. 
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Figure 9 (a) – supercritical Hopf bifurcation (b) limit cycle over the G(v) curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 – Simulation of the limit cycles on the empirical G(v) curve. For incresing V0 the cycle 
becomes larger and eventually it reaches the border of the positive quadrant (Lunedei, 2001). 
 

Maugis and Barquins are quite conscious of this: “the model is more complicated when the 
variation of the peel angle is taken into account, which gives a third degree of freedom (…) 
allowing a road to chaos when limit cycles are changed into strange attractors”. Following this 
suggestion Hong and Yue (1995) add a third variable (the peeling angle θ or the position α of the 
crack tip) obtaining the system: 
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( ) ( )[ ]
( )

( ) ( )






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=⋅

−+−⋅−=

−⋅=⋅
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cosvv
v

0
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&

&
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          (12) 

 
In our analysis we used the slightly different system (Ciccotti et al., 1998):  
 

( ) ( )

( )[ ]

F sin F v
I F R sin

F k R sin v V

R v R

⋅ − =

⋅ = ⋅ ⋅

= ⋅ ⋅ ⋅ − −

⋅ = − ⋅













1 0

0

α
ω α

α α

α ω

&

& &

&

       (13) 

 
Namely, we used a different convention for the sign of some variable, we eliminated the 

variable θ and we did not approximate sinα with α. 
Solving the equations numerically the authors affirm that chaotic orbits are present (they found 

three positive Lyapunov exponents). So the stick slip would be a deterministic chaotic phenomenon 
and the problem seems to be closed. But firstly a well defined route to chaos does not exist and 
furthermore we can notice that the equation ( ) ( )v1F 0F=+α  is a constraint derived in stationary 
conditions. Therefore it is not so natural and obvious to impose it in a highly dynamical regime. 
Moreover, if we study the equations (13) in a more fine way (Lunedei 2001) we discover that the 
proposed solutions were obtained imposing jumps of the crack velocity v. Using the constraint to 
eliminate α we can rewrite (Ciccotti et al., 1998) in terms of a set of three equations in three 
variables (F,v,ω): 
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    (14) 

 

which are valid for 0
v

0 ≠
d
dF , 0≠F  with two singular points at v = vC , v = vA. The numerical 

solutions of (14) admit a cycle only if they are forced by hand to avoid the singularities. More 
precisely, the solutions must be obliged to jump from one branch to the other when the critical 
velocities are encountered. Without that the system has no physical solution. So we argue that the 
deterministic chaos in the stick-slip seems to be rather artificial and not completely proved as 
intrinsic to the phenomenon. At this point, we can guess that the philosophy based on increasing the 
dynamical variables number in order to have a model able to describe the irregular stick-slip 
regime, is not the more suitable one. Moreover, the phenomenon of instability propagation in a 
viscoelastic medium could be more complicated than a “simple” dynamical system and could have 
some characteristics proper to a complex system (De Gennes, 1979; Kinloch and Young, 1983). 
This criticism has stimulated further theoretical and experimental research. The aim was to have a 
more accurate knowledge of the stick-slip propagation, firstly empirical. The highly nonlinear 
phenomena as the fracture dynamics produce really unpredictable evolutions. In order to extract 
useful information on the motion from experiments, we must record sufficiently long time series, 
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i.e. sequences of data representing the time evolution of one or more observable. After that, we can 
use the statistical analysis, or the geometrical reconstruction of the attactors in a suitable phase 
space, or some other technique to investigate the dynamics. The general philosophy of this approach 
is to draw out a physical meaning from an empirical signal, bypassing the knowledge of the 
underlying dynamics and/or the corresponding equations (Eckmann and Ruelle, 1985; Ruelle, 
1987). In this optics, we can search the significant points (bifurcations and so on) and eventually we 
can detect the emergence of hierarchical structures, one of the most significant complexity 
indicators (D’Alessandro and Politi, 1990). The problem will be to choose the good observable, i.e. 
the more proper observable to be measured with a sufficient precision and over a convenient long 
time. For this, Barquins, Ciccotti, Giorgini and Vallet have set up a new experiment and the first 
provisional results show a stick-slip behavior more complex than we could expect basing strictly on 
the theory of dynamical systems (Vallet et al., 2001).  
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4) The new experiment 
 
The new experiment that has been set up at the PMMH – ESPCI (Paris, France) aims at a 

complete description of the phase space of the stick-slip dynamics and its evolution as a function of 
the control parameter 0V . 

The experimental assembly is the classic one with constant traction velocity. This condition is 
enforced with the aid of a very stiff motor that enrolls the tape on a new ribbon (Fig. 4). Stable 
peeling is observed for traction velocities lower that a first critical velocity Cv  and larger than a 
second velocity Av . In the intermediate range the peeling is jerky and with rising velocity the stick-
slip dynamics becomes more and more complicated.  

Measuring the phase variables 
 
We proceed now to a synthetic description of the techniques developed in order to measure and 

record the evolution of the fundamental dynamical observables of the experiment, namely the 
traction force, the rotation velocity of the reel, the apparent position of the fracture front on the reel 
(which determines the peeling angle), and the acoustic emissions. A picture of the assembly is 
shown in figure 11. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 11 – General overview of the experimental set up 
 
The rotation velocity of the reel is measured by a tachymetric wheel (Fig 12). Three shells of 

holes induce an ordered sequence of commutation of the three photocells. The signals are 
electronically combined into one three-level analogic signal that is recorded by a computer, then 
converted into the ordered sequence of activated photocells that allows one to calculate the rotation 
velocity along with its sign. Since 24 timings are available for one tour, the average velocity can be 
monitored with valuable resolution in time. When elevated values of the rotation velocity have to be 
measured, the wheel is changed with another one which has an inferior number of larger holes. 

The reel of the adhesive tape is installed over a vertical steel beam that is sufficiently stiff in 
order not to affect the peeling dynamics, but whose small deflections in the stick-slip regime are 
large enough to be measured by laser ranging. The deflection is calibrated to measure the force F  
applied to the adhesive tape.  

To evaluate the apparent position of the fracture front (denoted by the angle α), we set up a 
high frequency digital camera (Fig. 13) that acquires a vertical line every millisecond. The sequence 
is analyzed on a computer to extract the vertical position of the adhesive tape at the given cross 
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section. This measure is then related to the apparent position of the fracture front by simple 
geometric relations.  

At last, a high precision microphone is placed near the position of the crack front to record the 
characteristic noise produced by the stick-slip dynamics. The identification of the acoustic bursts 
associated with the slip events are the most precise method for determining the long series of inter-
event times that are the main observable of the present study. The significance of the acoustic 
method for the recognition of events was previously tested (Barquins et al., 1995) by a correlation 
with the light emissions (sparks) associated with the strong ionization produced by the rapid slip 
and measured by a photomultiplier.  

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Fig 12 – A tachymetric wheel measures the evolution of the rotation velocity ω of the support. 

The electronic device produces a code related to the active photocells that are situated inside the 
white support. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13 – The high frequency digital camera measures the vertical position of the tight tape, 

providing the evolution in time of the apparent position of the fracture front. 
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5) The results 
 
As a first experimental step, we choose to measure the time interval between two subsequent 
events, i.e. our observable is the period t∆ . Usually, in physics, and especially in dynamics, the 
time is not a variable, but rather a parameter. However, in our situation the dynamical equations 
proposed to describe and explain the stick-slip at least partially failed. The time interval t∆  is the 
indicator that we can measure more precisely in order to evaluate the irregularity of the dynamics. 
Exactly as we do studying the behavior of a pendulum, for which we can define periodic, quasi-
periodic, aperiodic regimes, only measuring the periods, even if we do not know the equations 
governing the phenomenon. Obviously, the knowledge of the time interval series is not sufficient to 
model completely the dynamics. For example, we can not discover if we are in presence of space-
time chaos only by numerical time series of periods, even if these series were chaotic. But at least 
our philosophy can put in evidence the time structures underlying the phenomenon and give a 
criterion to discriminate different dynamical regimes, as a function of the control parameter. 

Analysis of data 
 
The acoustic emission of the adhesive tape in the stick-slip regime is recorded by a high quality 

microphone and digitized at the standard audio sampling frequency of 44100 Hz with a 16 bit signal 
that is stored in raw binary .wav files. 

Long records of events have been acquired for many values of the control parameter, i.e. the 
traction velocity 0V , spanning the unstable stick-slip regime. Since the sequences may involve 
thousands of events, some automatic recognition process is necessary for the analysis. 

For low values of the traction velocity, the stick-slip events are clearly separated and regular. 
They appear as abrupt acoustic bursts, followed by a gradual oscillating decay. A very simple 
threshold-window method is appropriate in this case: an event is detected any time the signal 
crosses a given threshold (evaluated as three times the root mean square of the signal), then a time 
window is skipped in order to let the signal decay below the threshold. Since the events are similar 
in intensity and well separated in time, the time window is easily chosen below the least observed 
interval and above the estimated decay time.  

When the traction velocity grows to higher values, the events become more and more frequent 
and irregular both in timing and intensity, making their separation  problematic. The above simple 
algorithm is no longer sufficient and some more elaborate criterion was developed. Since the 
oscillations become more persistent, the focus is shifted to the identifications of rapid changes in the 
signal. Due to the band filtering of the microphone, the burst is characterized by an irregular 
oscillation with a characteristic frequency given by the upper limit of the band (e.g. 6 kHz for the 
first microphone that was used). The acoustic power spectrum of the signal will be observed to 
rapidly fall above such a frequency. On the other hand, the abrupt initiation of the burst, is 
characterized by a local enhancement of the high frequency content. For that reason we performed a 
moving window Fast Fourier Transform on the signal and built a new index based on the integration 
of the high frequency acoustic power. Such an index is plotted in red in figure 14 and is evidently 
well correlated to the events. 

A special attention has been taken in order to evaluate the misfits of the recognition method. 
These may be of two kinds: (1) a “missed event” results in the substitution of two proper time 
intervals with a false longer time interval,  (2) a “false event” results in the loss of one proper time 
interval in favor of two false small ones. In order to ascertain that the observed structures are not 
due to the effects of these misfits, several set of data have been analyzed manually and presented a 
good  agreement with the results of the above algorithm. 

This method allowed us to identify the events up to a traction velocity 0V  = 10 cm/s with an 
efficiency better than 90%. After that, the oscillations in the signal appear to be almost continuous. 
A possible interpretation is that chaos and/or turbulence is completely installed (Becker, 2000). But 
at present we can not exclude that we have reached the limit of resolution of our apparatus, and that 
we are not able of distinguishing the events. 
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Figure 14 – Automatic recognition of the slip events in the acoustic signal. Black horizontal 

lines indicate standard thresholds, the red signal is the FFT based index along with its threshold.  

The emergence of hierarchical structures 
 
Although the stick-slip cycles are generally not periodic, it is interesting to plot the average 

period as a function of the traction velocity (see Figure 15). In first approximation the average 
frequency is proportional to the traction velocity and a linear fit provides the relation: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15 – Average period of stick-slip cycles as a function of the traction velocity. 

 
Actually, the cycles are only quasi periodic for low traction velocities, while they become 

irregular increasing speed. The analysis of the time intervals has put into evidence that the dynamics 
goes through a series of progressive complications when the traction velocity 0V  passes some 
subsequent critical values. In particular, there is a first low velocity domain in which the cycles are 
approximately periodic and for which the period diminishes as the traction velocity is increased 
(Figure 16). This domain is followed by the appearance of  sparse rapid events which have a period 
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(here simply meaning the time interval between two subsequent events) that is a multiple of the 
fixed time interval 0.02s (Figure 17). The events of double or triple period become progressively 
more frequent leading to the establishment of an ordered structure with three possible periods, then 
they decrease again in frequency until a new regular regime is observed with substantially periodic 
events at the short time interval of 0.02s. This time interval does not change with traction velocity, 
until at higher speed, the cycles undergo a second bifurcation with the appearance of sparse events 
with a duration multiple of a new shorter fixed time interval which is about ten times shorter than 
the previous one. These measures are still in analysis, due to the increased difficulties of separating 
such a frequent series, but we can anticipate that a new structure is again developed. At higher 
velocities the acoustic signal is mixed to such an extent that we can not distinguish any event at the 
present state. However, at a traction velocity of 3 m/s the peeling becomes again stable without the 
crackling noise and it remains stable until the reach of the limit velocity given by the Rayleigh wave 
velocity in the crack surface. 

 
 

 
 
 
 
 
 
Figure 16 – Distribution of the time intervals for 0V  = 2, 4, 6 mm/s. 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
Figure 17 – Distribution of the time intervals for 0V  = 2, 3, 4, 5, 6, 7 cm/s. 
 

We can resume complication cascade like follows: 
 

• Up to 0.7 mm/s: stable peeling 
• At 0.7 mm/s beginning of regular stick-slip. Time periods fall with growing  traction velocity 
• At 1 cm/s apparition of first multiplets with ∆t ≈ 0.02, 0.04, 0.06 s. The structure  develops up to 

3 cm/s, then it concentrates on the shortest interval 
• At 6 cm/s apparition of sub-multiplets with ∆t ≈ 0.001, 0.002, 0.003 s. The structure develops, 

but the signal is lost at 10 cm/s 
• At 3 m/s the peeling becomes again stable and humming up to the maximum traction velocity of 

the engine 6 m/s 
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Developments 
 
Some numerical simulations of the stick-slip dynamics have been set up taking into special care 

the large variations of the peeling velocity during the cycles. Preliminary tests show that the 
simulations can accurately describe the low velocity regime and they also predict a series of 
bifurcations which correspond to a progressively complicating dynamics. Although the simulated 
dynamics appears qualitatively different than the observed one, we are performing a new set of 
simulations which include the effective mechanical parameters of the experiment in  order to verify 
if at least the location of the critical values of the bifurcations are reproduced.  

The data are also being analyzed with a different approach, that is by a statistical analysis of the 
series of time intervals (figure 18), with the aim of investigating the correlation between subsequent 
cycles and extracting the predictive information hidden in the data (Packard et al., 1980). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18 – Correlation between adjacent events of the three level structure ( 0V  = 3 cm/s) in a 
phase space (tn , tn+1). 

 
In particular, we analyzed the series of time intervals of the data with 0V  = 3 cm/s, for which 

the intervals only have the three multiple lengths, denoted with letters A, B, C. A simple statistical 
analysis shows that the subsequent intervals are not independent, but they are neither well described 
by a first order Markov process. We are presently evaluating the predictive power of the series and 
the presence of nonlinear correlations by an evaluation of the embedding dimension. 
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Conclusions 
 
As we have seen, the main dynamical models constructed to explain the peeling evolution of an 

adhesive tape can predict correctly only the stationary behaviors and the approximately periodic 
stick-slip cycles. But when the stick-slip becomes very irregular the proposed models are 
insufficient also if we increase the number of degrees of freedom. 

On the other hand, the results of new experiments show that the stick-slip dynamics is more 
rich and complicated than a simple bifurcation's route to chaos. 

We observe hierarchical structures in a definite traction velocity range that can suggest the  
emergence of complexity, at least in qualitative sense, when a fracture is produced and evolves in a 
viscoelastic system. 

Strong efforts are being spent in the direction of resolving the series of more rapid events 
associated to the higher traction velocities, to understand the complex dynamics which is 
progressively installing. The dynamical models predict a cascade of bifurcations leading to 
deterministic chaos. We do not have the classic cascade with Feigenbaum universality (Cvitanovic 
1989), but it could be possible that the observed complex dynamics leads to time chaos. Another 
point of view could be statistical: for high traction velocities the peeling in the stick-slip regime 
could not any longer be described by dynamical equations, but would rather be the result of a large 
number of degrees of freedom cooperating to constitute a self-organized system in a critical state far 
from equilibrium. But, before venturing an interpretation, we must measure the other observables 
F , ω  and, above all, the crack speed v. Furthermore, we must investigate the possible 
mathematical correlations of our time series of data. Finally, the goal would be to find a physical 
interpretation of the phenomenon or, more precisely, discovering the physical laws and equations 
that originate the observed fracture complex dynamics. 

However, the peeling apparatus set up in the PMMH-ESPCI laboratory provides a good 
experimental model to study nonlinear phenomena in a fine way, following step by step the 
increasing instability and furnishing the suitable long time series of data.  

At last, we want underline how a common scotch roller can be so enigmatic and full of mystery 
to justify the ancient saying “I know that I don't know”. Perhaps this sentence could be the deep 
meaning of “complexity”. 
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