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Abstract

This paper analyses the dynamic equations representing the peeling dynamics of an adhesive tape from a rotating support. Three
degrees of freedom are considered. Speed jumps are shown to be possible and are then introduced into the dynamics by discontinuous
operators. Differences with previous models are studied, with regard also to the eventuality of chaotic orbits. The observed
metastability of the stationary branches is accounted in an early catastrophe model. An analogy between the sudden jumps of the
crack speed and the abrupt phase transitions of a van der Waals’ fluid is developed with the aim of suggesting a possible statistical

interpretation of fracture dynamics. © 1998 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The everyday experience shows that in a given range of
temperatures and velocities, the peeling of an adhesive
tape is jerky with emission of a characteristic noise. In
previous works [1-4] the peeling was studied when
a constant traction velocity V, is imposed onto the free
end by the action of an electric motor (Fig. 1). The limit
between the adhesive tape ribbon and the free end may
be seen as a crack tip that propagates with speed v.

Three different modes of peeling were observed, rela-
tive to the velocity applied: at slow speed V', the tape was
peeled regularly with the crack propagation speed v = ¥,
and both the speed v and the peeling force F increased
with the imposed speed V,. It was shown that the strain
energy release rate G varied as a power function of the
crack propagation speed V;. The same phenomenon was
found at high speeds with a considerable rise of the
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peeling force with increasing velocity. Between these two
modes, a phenomenon of self-sustained oscillations
(stick-slip) already described by Aubrey and Sherniff [5]
was observed, i.e. the peeling of the tape becomes jerky
with the emission of a characteristic noise.

Some dynamic models have been proposed in order to
explain the nature of the stick-slip dynamics and to
understand the role of the main parameters like the value
of the pull speed V,, the length L of the free ribbon
between the reel and the motor (this affecting the elasti-
city constant k), the moment of inertia I of the rotary
support, the values of temperature T and humidity ratio
HR.

A ‘two variables’ model [1-3] (G, v) produced good
results when applied to the initial part of the stick-slip
region (at slow speed), but when the traction speed is
increased the oscillations become very irregular and do
not correspond with theoretical predictions. A first three
variables model (F, v, o) introducing the variations of the
peeling angle 6 and the position x of the crack tip (Fig. 1)
was proposed by Hong and Yue [4] and the numerical
simulations indicated the presence of chaotic orbits (pos-
itive Lyapunov exponents were found).
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Fig. 1. System geometric description. The ribbon is driven by the
engine (on the right) with traction speed V,. The fracture line at
point P is subjected to a force F at an inclination 6 to the fracture plane.
The apparent movement of the fracture point (indicated by &- R} is the
result of a noncompensation between the rotational movement - R
and the crack speed v. L is the length of the free portion and [ the
distance OO'.

In our previous work [6] we reported a different ex-
periment where the tape was unrolled by the action of
a load hooked to the free extremity (constant pull force).
The interesting results concerning the observation of
speed jumps and the hysteretical behaviour of the frac-
ture’s advance have stimulated further studies and led to
some modifications of the physical interpretation which
seem to get us closer to the real nature of the stick-slip
dynamics in peeling.

The main aim of this paper is to expose three different
steps which represent successive possible improvements
of the physical interpretation and modelling.

2. Three-variables model and dynamic equations

Let us first review a three-variables continuous model,
following the path of Hong and Yue [4]. System geo-
metric configuration and variables are shown in Fig. 1,
where I is the moment of inertia and w is the rotational
velocity of the support, F the applied force, v the crack
speed, V, the traction speed (which is maintained con-
stant by the action of an electric motor), « the position of
the fracture line (point P in Fig. 1), 8 the peeling angle,
L the length of the free ribbon and [ the distance 00" in
Fig. 1. Let’s call k the linear elasticity constant of the free
ribbon (affected by the length L).

For this system, using the approximated relations
(when length I»R) I~ L, a+0=mn/2 sin 0 ~ cos a,
cos O ~ sin %, we obtain the following set of dynamic
equations (System 1):

F-(1 —sina) = Fo(v),

I-&=F-R-sinq,

F=k [R-sina&—(v— V)], (1
R-a=v—w.R

This System 1 is the same as that of Hong and Yue [4]
except for the elimination of ¢ and for some different

computational assumptions about signs and approxima-
tions.
The relation:

F-(1 —sina) = Fy(v) (2)

derives from the experimental relation F.(1 — cos3)
= F,(v), obtained by Rivlin [7] which gives the crack
speed when a constant force F is applied to the ribbon at
an inclination 0 to the adhesion plane. The re-
lation Fo(v) = G/b (where b is the lateral width of the
tape and G the strain energy release rate) is determined
empirically by measuring F(v) for § = /2 (normal peel-
ing for an adhesive tape roller). Although Eq. (2) was
obtained in conditions of stationary speed, in literature it
is normally used also as a dynamic relation between F,
v and o

In this way it can be used to eliminate o, thus obtaining
a set of three differential equations in the three variables
(F, v, w):

I = kl:F_—FFM(U —w'R)—(v— Vo):|,

1 [ Felo Fo0)\
g [ #5r1-(- 1)

©)

R
& =7 .(F = Fo(t)),

which is valid for dFy/dev(v) # 0 and F # 0.

Considering a traction velocity ¥V, which does not
correspond with a maximum or minimum of Fo(v), we
can verify that Eg. (3) allows only one fixed point
F=FyV,), v="V, @=Vy/R for =0 (ie. 0 =rm/2)
This point is stable if dFy/dv(V,) > 0. In the case of
a negative slope, the fixed point is unstable and it is
surrounded by a stable limit cycle, which is assumed to
represent the stick-slip motion (Fig. 2b).

More exactly when the pull speed V, crosses the criti-
cal value v, the fixed point becomes unstable, but sur-
rounded by a stable limit cycle; the occurring bifurcation
is the hypercritical Hopf bifurcation (Fig. 2a) whose
order parameter is &.

.= J.L.(ﬂ)
2 Jk1 \dv Jooy,

The limit cycles are initially period one, but when
V, grows through the intermediate range vc < Vo < ta
(Fig. 2b) the limit cycle becomes multiperiodic and also
presents chaotic orbits when V; is comprised into a nar-
row range far from vc (positive maximum Lyapunov
exponents were found [4]).
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Fig. 2. (a) Hypercritical Hopf bifurcation. When the order parameter ¢ becomes positive, a stable fixed point splits into an unstable fixed point

surrounded by a stable limit cycle of radius R = \/s- (b} Limit cycle on the curve F = Fo(v). These cycles appear when the traction speed V; crosses the
critical value z¢. The first part of the cycle is superposed to the slow branch of the curve, then it separates due to inertial effects.

This was taken as an interpretation of the great irregu-
larities observed in the stick-slip cycles. We may notice
again that stick-slip cycles are considered to be continu-
ous and that the jerky behaviour is considered to be the
limit situation when the inertia of the rotary support can
be ignored [2].

3. Catastrophic propagation model

In this paper we propose a different interpretation of
the stick-slip dynamics in peeling. By working with im-
posed load [6, 8], the experimental evidence is that when
the force crosses the critical value F¢ = Fy(ve) (Fig. 3)
a speed jump occurs together with an acoustic emission.

The crack speed rises immediately up to a figure one
thousand times greater, so that the crack proceeds much
quicker than the pull point, causing a decrease of the free
ribbon extension and consequently of the effective force
acting on the fracture line. When the force falls under the
second critical value F, (corresponding to v,, in Fig. 3)
a second speed jump occurs towards slow crack propaga-
tion and the ribbon starts stretching again.

This seems to give an interesting interpretation of the
stick-slip dynamics present when the traction speed V; is
imposed. The intermediate speed range vc <v <Ua
would practically be banned for the crack speed v, so that
when the traction speed Vj is in this range, the crack
speed v undergoes a series of discontinuous dynamic
cycles BCDAB, as shown in Fig. 3.

This interpretation was first hinted at in earlier works
[1, 3] (for a two variables model) and then discarded by
Maugis [2] who thought the speed jumps were in contra-
diction with the presence of the inertial effects due to the
rotary support of the tape (see the second equation of the
System 1).

The two-variables model used by Maugis [2] takes the
approximation of ignoring the variations of the crack

Fh
7, V Fo(v)
%Dl
Fe gl Z???’ 77 D
B D277/.7(1A
7 R
Vb Ve Vo VoA Vo vy

Fig. 3. Discontinuous dynamic cycles (stick-slip). The fracture undergoes
a continuous evolution g, along the segment BC, then a sudden speed
jump D, between C and D (dashed line), then a second continuous
evolution g, along DA and a second jump D, between A and B. The
cycles do not lie exactly on the curve Fo(v) because of the variations of
the fracture line’s position « (see Eq. (2)). This also allows the cycles to
be not to be necessarily closed (a period-two cycle is shown in the
picture).

position denoted by . This way the last equation of
System 1 becomes v = w- R, thus introducing a nonreal-
istic strict bond between the crack speed and the rota-
tional speed of the reel. This forced Maugis [2] to discard
the speed jumps of the crack speed because they would
imply discontinuities in the rotational speed of the reel.

Going back to the three variables model, we can see in
the last equation of System 1 that a discontinuity of the
crack speed v can occur together with a continuous
evolution of the rotational speed w provided that we also
have a discontinuity in % i.e., if the apparent position of
the fracture line starts a sudden precession. This can be
observed while unrolling a tape (try to produce a stick-
slip cycle with a common cellotape!).

We should notice that the speed jumps will occur also
if the support is a rigid table with infinite inertia and are
not just a limit situation of zero-inertia (try it by pulling
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the ribbon while holding tight the reel). We think that
there are no other reasons to reject the speed jumps,
which are so near to the evidence and which were a basic
part of the stick-slip interpretation before Maugis’ model
[2, 3]. The speed jumps represent a catastrophic behav-
iour and must be introduced into the dynamic equations
by two discontinuous operators D, and D, which in-
stantly increase (or decrease) the crack speed when the
critical value v¢ (or v,) is crossed, leaving the values of
F and o unaffected. The evolution on the two continuous
branches simply follows the classical differential set
(System 1).

Note that the evolution of the phase point x = (F, v, w)
does not lie on the curve Fy(v) in Fig. 3 because of the
variations of « (Eq. (2)). The diagram of F versus v is just
a projection of the three dimensional phase space.

If we denote with g’ and g}, the evolution operators on
the two continuous branches (solutions of System 1) and
we start a cycle from point xg we can express the evolu-
tion as follows (see Fig. 3):

xc = ¢1(xg) > Ty = Ty(xs),

xp = D1(x¢c) = xc = (Fc, v, w¢) = xp = (Fe, vp, ), (4)
Xa = g3(xp) = T2 = T(xp),

xg = D3(Xg) = Xa = (Fa, Ua, @a) = Xp = (Fa, U, @a),
xp = D2(93*(D1(91" (xa)))) = M(xp).

In this way the evolution operator M for one complete
cycle in the three dimensional phase space can be con-
structed by a composition of two branches of continuous
evolution and two speed jumps (Fig. 3):

M=D2Cg2TZ°D1 C'glrlz (5)
x3 T = M(x}).

Thus we can obtain a recursive law which can be used
to study the nature of the orbits, with the aim to verify the
presence of chaotic orbits in fracture dynamics. We must
observe that this interpretation does not allow for any
limit cycle or Hopf bifurcation, and that the eventual
presence of chaos would not depend on the properties of
the intermediate speed range which is uncoupled from
the dynamics. An experimental hint at this theory lies in
the fact that when the traction speed exceeds the critical
value v, the stick-slip regime starts abruptly with a large
amplitude.

4. Early catastrophe interpretation

We have also looked further into the physical nature of
the speed jumps and attempted to explain certain experi-
mental behaviours which do not match with any of the
previous models.

Our previous works [6, 8] show that the terminal part
of the slow branch is indeed metastable when working
with imposed load, i.e., a little perturbation induces an
early crack starting the stick-slip regime also if the load
has not reached the critical value Fc. It was also observed
[5] that the two stable branches correspond with differ-
ent fracture modalities (plastic-brittle behaviour). This
guides us to simplify the peeling dynamics just to what is
observed: the dissipation curve (Fig. 3) is indeed made of
the two single branches with positive slope correspond-
ing to two different fracture modalities. There is no way
of obtaining a fracture propagation with a speed included
in the intermediate range, i.e., there is no realistic nega-
tive slope branch, but just a forbidden region. When the
pull force crosses the critical value Fc the slow fracture
modality becomes unstable and the system abruptly
starts the fast modality which is stable around these
values of the force.

When the traction speed V, is comprised in the for-
bidden range, the crack speed is forced to undergo the
stick-slip cycles, mediated by the elastic property of the
free ribbon. The ribbon undergoes a series of subsequent
extensions and relaxations because the crack speed v is
always found to be smaller or bigger than the traction
speed V,, which cannot be reached.

An interesting behavioural analogy is given by the van
der Waals’ model (Fig. 4): an S-shaped curve was ex-
pected for a monophasic gas at constant temperature, but
experience shows that only the two negative slope
branches correspond with natural systems and are re-
lated to different states of association: liquid and gas.
Regions CF and EA were found as metastable, while no
monophasic system exists when the volume is in the
intermediate region AC. If we take a gas to point F and
increase the pressure with enough care, we can still ob-
serve a gas, but a minimal perturbation induces a sudden
phase transition to liquid. If we reach the point C, the
phase transition is certain. The transition is not indeed
instantaneous: when the metastable monophasic gas
loses stability there is a transitory out of equilibrium
situation before the system is reorganised in the liquid
phase.

This leads us to develop a statistical interpretation of
fracture dynamics: if we consider the macroscopic ad-
vance of the fracture line as the combination of a huge
number of microfractures in its neighbourhood (which is
a realistic hypothesis), Eq. (2) is interpreted as a state
equation for the fracture and represents the possible
values of the macroscopic crack speed when the fracture
experiences a force F at a temperature T. The S-shaped
curve is indeed an isothermal curve and its negative slope
branch simply does not exist because no macroscopic
crack speed is observed inside this range.

The two positive-slope branches represent two differ-
ent modes (phases) of fracturing [5], the last part of each
branch being metastable [6]. When the top of a branch is
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Fig. 4. Isothermal curves for the Van der Waals’ model. The thick line
shows a realistic liquid—gas phase transition. The flat line EF corres-
ponds to coexistence of the two phases. The thin line EACF corres-
ponds to Van der Waals’ predictions for a monophasic system.
Branches EA and CF are shown to exist as metastable states, while the
dashed branch AC can not be observed. If a gas reaches point C (or
even before) it undergoes a sudden phase transition to liquid. The same
(reversed) holds for a liquid reaching point A.

reached (or even before if a perturbation occurs) the first
fracture modality loses stability towards the other one, so
that we have a speed jump.

If speed jumps can effectively be considered, as some
sort of abrupt phase transitions in a statistic ‘microfrac-
tures system’, we deduce that they are not really instant
but they take a transitory time (in the evidence very
short) during which the system is out of equilibrium and
is not represented by Fig. 2.

For the mathematical model, when a perturbation
induces an early speed jump, we must anticipate the
action of the discontinuous jump operator in the dy-
namic solution, which becomes this way more complex.
In addition, if Eq. (2) is indeed a state equation, nothing
assures that it can be used as a dynamic constraint: its
effectiveness would be reduced to slow variations of the
pull force, which can be considered as ‘quasistatic’ in
relation to the characteristic transitory time (relaxation
time) of the statistic system.

In fact the stick-slip cycles are very fast (from 100 to
700 cycles/s) and therefore it is difficult to think of
a quasistatic evolution. For high rates, early transitions
could become the ordinary behaviour for each cycle, the
point of transition remaining random.

This early catastrophe’s model is just a hypothesis born
from the observation of the metastabilities, but aptly
explains some experimental anomalies which were not
understood before.

For example it was observed [1] that when the stick-
slip rate increases, a fall in the amplitude of the force
oscillations occurs, which is consistent with the easier
occurrence of early catastrophes at high rates. Moreover,
for high stick-slip rates the typical matt tracks left on the
ribbon vanish [1]. These tracks are left when the cycles
pass by a little cohesive region near point B in Fig. 3. If
we have an early jump during the descent of DA, the
little cohesive region would not be covered, thus motivat-
ing the absence of the matt track. A further hint at the

statistical interpretation is also given by the strong de-
pendence on temperature of the state equation (through
Fy(v), see Refs. [1, 3]).

5. Summary and conclusion

The two-variables model [1-3] is good to investigate
the stability of the fixed points corresponding to station-
ary crack advance, but it is insufficient to explain the
nature of the stick-slip phenomenon because it does not
admit the presence of speed jumps. Using a three-vari-
ables model we have shown that speed jumps (which are
very easy to observe on a common tape) are indeed
possible because they are compensated by sharp vari-
ations of the peeling angle.

This has led us to recover the old interpretation [1] of
the stick-slip cycles as discontinuous cycles made of
a jerky alternation between slow and high speed fracture
advancement. A new mathematical model was then de-
veloped to describe such cycles in a three dimensional
phase space, alternating phases of continuous evolution
under certain differential equations [4] and sharp speed
jumps that occur when the critical values of the crack
speed or peeling force are reached.

This shows that the intermediate speed region is never
visited by the crack speed and can be considered as not
existing because never observed and not necessary to
explain the phenomenon. The characteristic curve of the
fracture is simply just made of two positive slope
branches which correspond to two different fracture mo-
dalities (plastic—brittle behaviour). If this is correct, the
hypothesis of a Hopf bifurcation and the interpretation
of stick-slip cycles as continuous limit cycles should be
discarded and also the research on chaotic orbits [4]
should be revised by evaluating the Lyapunov exponents
on the new kind of discontinuous orbits.

Speed jumps are well interpreted mathematically by
catastrophic events, but what is their physical meaning?
What happens to the fracture during a jump? We believe
that the fracture advance should be interpreted as the
result of a huge number of microfractures which produce a
macroscopic coherent front line which can advance only
with speed smaller or higher than the intermediate for-
bidden region. When the speed reaches the critical values,
the macroscopic coherence is lost and the system is
quickly reorganised to move at a very different speed,
whose value corresponds to the same force on the other
branch.

We are then probably facing a statistical rather than
purely dynamical system and care for the consequences
in the mathematical treatment. Eq. (2) is better inter-
preted as a state equation and should be used dynam-
ically only if the variations are slow relative to the
statistic relaxational times, which seems not to be always
the case.
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The study of the propagation under constant load [6]
has shown a metastability of the stationary propagation
near the critical points. The fracture presents some sort of
an early catastrophe which is very similar to the abrupt
phase transition of a real gas when carefully compressed
over saturation. When the stick-slip rate grows, an early
catastrophe seem to be the ordinary end of each cycle,
thus strongly contributing to cause the irregularity ob-
served in the force registrations, and motivating the fall
in amplitude observed.

The aim of the present paper is just to show that the
classical dynamical way of treating fractures seems to be
insufficient to deal with fast stick-slip cycles and that
a statistical interpretation would be very useful to under-
stand the real nature of fracture propagation.

Work is in progress to see if it is possible to construct
a statistical model able to preview the shape of the state
equation (Eq. (2)), the duration of the transitory time and
the reliability of the state equation as a dynamic con-
straint. Some new experiments are also being projected
to provide a long series of experimental results which will
undergo some correlation tests in order to inquire the
real dimensionality of the orbits in phase space and to
state if it is possible to treat the system in a simply
dynamic way.
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