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Technical Note

Practical application of an improved methodology for the double
torsion load relaxation method
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1. Introduction

For most materials the dynamics of subcritical crack
propagation during stress-corrosion can be described
uniquely by a relationship between the mode-I stress
intensity factor KI and the crack velocity v that generally
has the form of a power law [1]

u ¼ AKnI ð1Þ

with parameters A and n (the latter called the stress-
corrosion index) depending on the materials properties
and on the environmental conditions.

In the last 30 years, the double-torsion load rela-
xation method (see Fig. 1) has been the most
reliable technique for measuring subcritical crack
growth, although a considerable scatter in the measured
parameters is observed even in the same laboratory
[3, 4].

We have recently shown [5, 6] that some of these
discrepancies can be traced to the analytical formula-
tion, which provides an incomplete description of the
effective deformation of the specimen and of the
influence of some important details such as the shape
and depth of the side groove and of the initial notch, the
curved shape of the crack front profile, and the nature
and extension of the process zone near the crack tip.
An accurate three-dimensional finite-element analysis
of the DT specimen was performed and the
detailed methodology is described therein. Evans’
method was shown to underestimate the stress-corrosion
index by an amount up to 30%, even operating inside
the range in which KI is constant within 5%. This note
reports the application of such a methodology to lava
rocks.

2. Test materials

The lava rock specimens are from Vulcano, Aeolian
Islands, Italy. Specimen V2 was taken from the Fossa
latitic eruption, V3 comes from the Lentya rhyolitic
dome. On the first specimen we could perform two
consecutive relaxations (r1 and r2). A specimen of
quartz-feldspar sandstones (C3) from the locality of
Castrola, Castel di Casio, Italy was also tested. The two
lava specimens were analyzed for their importance in
representing the typical eruptive products of Vulcano
island, which is the site of one of the major explosive
volcanoes of the Mediterranean basin, while the
Apennine sandstone is a very common construction
material in the whole of Italy. The geometric parameters
of the specimens are reported in Table 1.

3. Application of the corrective method

For each model geometry, the finite-element analysis
produced a set of five corrective coefficients x for the
compliance and five coefficients c for its derivative,
relative to different crack lengths (tables may be found
in [5, 6]). To obtain the adequate corrective functions,
the set of coefficients for the geometry of the specific
specimen used in the test should first be determined, and
then the coefficients should be interpolated to provide
for a smooth function.

3.1. Aspect ratio

Corrective coefficients are assumed to be the same for
specimens with identical aspect ratio d :W :L. The first
operation to perform is therefore to scale the model
geometries to the specimen size. The most suitable
solution would be to produce specimens with the same
aspect ratio as the ones analyzed in the finite-element
study. However, if one needs to correct preexisting data,
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as in many practical cases, interpolation between
different aspect ratios may be attempted.

The aspect ratios of specimens V2 and V3
(see Table 1) are very similar to the model geometries
with d ¼ 7mm, W ¼ 60mm, L ¼ 170mm and
d ¼ 7mm, W ¼ 100mm, L ¼ 250mm, respectively.
The scaling ratios to be applied to such models are,
respectively (1.1670.04) and (0.8470.02). Specimen C3

has the same d :W ratio as the model specimens with
d ¼ 7mm andW ¼ 100mm, but an intermediate length
between L ¼ 170 and 250mm. Two series of coefficients
have been calculated for the two lengths with the same
scaling ratio (0.73570.006), then a further interpolation
between different lengths has been performed.

Once the appropriately scaled model is derived, linear
interpolation of the effect of all other parameters can be

Fig. 1. Sketch of a double torsion specimen: (a) general view, (b) axial cross-section, (c) longitudinal cross-section. d,W , L are the thickness, width

and length of the specimen, dn is the thickness along the groove, gw the width of the groove, nl the length of the notch, P the applied load, wm the

moment arm of the couple, a the crack length (modified after Atkinson [2]).

Table 1

Geometrical properties of the rock specimens V2, V3 and C3, along with the properties of the corresponding scaled models (SM)a

Specimen d W L d : W : L dn=d gw nl a0

V2 8.4 69.5 190 1 : 8.3 : 22.8 2/3 1.8 10 10

SM-V2 8.1 69.5 197 1 : 8.6 : 24.3 2/3 0; 2.32 0; 23.2 5.8

V3 6.0 81.4 212 1 : 13.7 : 35.6 4/5 1.8 11 11

SM-V3 5.9 84.0 210 1 : 14.3 : 35.7 2/3; 1 1.68; 3.36 0; 16.8 4.2

C3 5.3 71.1 161 1 : 14.0 : 30.4 5/7 2.0 10 5

SM-C3a 5.2 73.5 125 1 : 14.3 : 24.3 2/3; 1 1.67; 2.94 0;14.7 3.7

SM-C3b 5.2 73.5 184 1 : 14.3 : 35.7 2/3; 1 1.67; 2.94 0;14.7 3.7

aTwo values of the model properties are reported when interpolation is necessary. Two different scaled models were used for specimen C3 since the

actual length is intermediate between the two. All lengths are measured in mm. d is the thickness,W the width, L the length, dn the thickness along

the groove, gw the groove width, nl the length of the notch, a0 the distance of the loading points from the end of the specimen.
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performed in cascade. In other words, one should
consider the sets of five coefficients corresponding to
all combinations of interesting parameters (see Table 1)
and perform linear combinations between all couples of
sets only differing for that parameter. One should then
consider the next parameter and repeat the same
operation on the resulting reduced set, and so on until
one obtains a single set of coefficients relative to the
specimen. The suggested interpolation order is to start
from the notch length, then the groove width and finally
the groove depth.

3.2. Effective notch length

Provided that the notch extends towards the center of
the specimen past the loading points, the external part of
the specimen does not affect the strain energy. As a
consequence, the part of the notch that should be
compared among different specimens is the one exceed-
ing the position of the loading points. For example, for
specimen V2, the effective notch length is 0mm and the
effective values for the scaled model are @5.8 and
17.4mm. One should not be surprised about negative
notch length; this simply accounts for the compressional
effect of the part standing before the loading points
Fresulting in a reduced compliance.

3.3. Crack front inclination

Since typical front inclination is c ¼ Da=dn ¼ 5 [1], the
maximum crack front inclination explored, c ¼ 4,
should be used. Higher values of c could not be modeled
due to the limitations in the skewness of the elements
that are required to perform an accurate numerical
analysis.

3.4. Interpolation of the corrective functions

Once the two sets of five coefficients x and c along
with the relative crack lengths for the scaled model have
been obtained, smooth functions should be interpolated
to provide solutions for all crack lengths inside the
explored domain. An appropriate choice for smoothing
the corrective factors cðaÞ appears to be a least-squares
third-degree polynomial fit. The corrective coefficients x
are best approximated by fitting the normalized
compliance xðaÞ, a with a second-order polynomial fit
and then dividing by the crack length.

The interpolating functions for specimens V2 and V3
are as follows:

cV2ðaÞ ¼ 7:224�10@4a3@2:013�10@2a2

þ 1:866�10@1aþ 3:898�10@1; ð2Þ

xV2ðaÞ ¼ 3:554�10@3aþ 9:032�10@1

þ 8:385�10@11

a
; ð3Þ

cV3ðaÞ ¼ 8:296�10@4a3@2:404�10@2a2

þ 2:268�10@1aþ 2:223�10@1; ð4Þ

xV3ðaÞ ¼ 7:401�10@3aþ 8:221�10@1

@4:323�10@21

a
: ð5Þ

Concerning specimen C3, the curves for both values
of the length of the scaled models should be inter-
polated, then a linear combination of these polynomials
should be performed to obtain the curves for the actual
value of specimen length

cC3ðaÞ ¼ 2:262�10@3a3@6:248�10@2a2

þ 5:837�10@1a@0:941�10@1; ð6Þ

xC3ðaÞ ¼ 1:378�10@2aþ 6:927�10@1

@3:908�10@11

a
: ð7Þ

The values of the coefficients x and c for the
three specimens are reported in Table 2 and plotted in
Figs. 2–5 along with the corresponding interpolating
curves.

The approximation errors for both c and x do not
exceed 0.7% indicating that polynomials provide a good
interpolation within the ranges of the coefficients. We do
not recommend any extrapolation out of such ranges.

3.5. Analysis of relaxation data

The load relaxation data were pretreated to remove
the external relaxation of the loading machine and the
oscillations due to the cycles of thermoregulation. This
produced smooth interpolation curves (splines) for PðtÞ
and for the derivative dP=dt.

The corrective method described in [6] is then applied
to obtain the KI@v curves which are reported in Fig. 6
along with the corresponding curves resulting from
Evans’ model. Measures of the final load and crack
length were generally used as a reference point due to
their higher stability.

As we can see, the changes affect both the placement
and the slope of the curves. The values of the stress
corrosion index reported in Table 3 were obtained by
linear fit. As expected, the values of n are generally
larger than the ones obtained by Evans’ analysis by an
amount up to 19%.

3.6. Improved coefficient f

Virkar and Gordon [7] showed that the crack velocity
and KI are not constant along the front due to its
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curvature. Pollet and Burns [8] showed that averaging
may be accomplished by simply changing the expression
of coefficient f in Evans’ equations

f ¼
1

dn

Z dn

0

sin aðxÞ1=ndx
� �n

; ð8Þ

where a is the inclination of the fracture front relative to
the specimen surface as a function of depth x along the
thickness, and n is the stress-corrosion index. If the
crack front is a straight line, f assumes the value

proposed by Evans, dn=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Da2 þ d2n

p
, which is just a first

order correction.
Since one does not have direct measures of the crack

front shape in rock specimens, following the observation
that Da=dn is generally near 5 [1] it is assumed that f ¼
0:196 using Evans’ expression. To investigate the
magnitude of the corrections we have considered some
front profiles with the functional shape

y

dn
¼

Da
dn

x

dn

� �p
; ð9Þ

Table 2

Corrective factors x and c along with the five corresponding values of the crack length a, as obtained by the interpolation process for specimens V2,

V3 and C3 (see Table 1 for their geometric properties)a

SM-V2

a 5.2 cm 7.5 cm 9.8 cm 12.1 cm 14.5 cm

x 1.082 1.042 1.024 1.014 1.013

c 0.918 0.961 0.968 0.980 1.068

SM-V3

a 4.6 cm 7.1 cm 10.5 cm 13.8 cm 17.2 cm

x 0.844 0.870 0.899 0.917 0.948

c 0.840 0.911 0.922 0.949 1.224

SM-C3a

a 5.7 cm 8.2 cm 10.8 cm 13.3 cm 15.8 cm

x 0.692 0.719 0.766 0.805 0.850

c 0.541 0.872 0.892 0.954 1.147

SM-C3b

a 4.7 cm 7.3 cm 10.8 cm 14.2 cm 17.6 cm

x 0.691 0.765 0.823 0.860 0.896

c 0.763 0.880 0.900 0.928 1.136

aThe values of the crack length are measured starting from the loading points.

Fig. 2. x coefficients and interpolated curves for the two scaled models (SM) related to specimens V2 and V3 (see Table 2).
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where x and y are as in Fig. 7, the ratio Da=dn is
assumed to equal 5, and the exponent p was taken
between 1 (straight line) and 4 (very curved profile). On
such curves we calculated the values of f using Eq. (8)
for values of n between 1 and 100 and verified that they
are quite constant for n > 10, which is the case for most
types of rocks. In Fig. 8 we reported the asymptotic

values of f as a function of the curvature exponent p.
The parameter f takes Evans’ value for a flat crack
front (p ¼ 1) and increases with p eventually reaching
rather large figures.

At any rate, the commonly accepted crack front
profiles [9–11] are generally found to lie between curves
with exponent p between 1.4 and 3.6, which correspond

Fig. 3. Same as in Fig 2, but for c coefficients.

Fig. 4. x coefficients and interpolated curves for the two scaled models (SM) related to specimen C3 (see Table 2) along with the curve interpolated

for the actual specimen length.
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to values of f between 0.2 and 0.3. For this reason we
take f ¼ 0:2570:05.

Virkar and Gordon showed that the crack shape, and
consequently f, depend on the exponent n and can then
vary along a relaxation test if the KI2u curve is not
loglinear. However, if one limits the analysis to region
III of subcritical crack growth (see [3] for a description

of region III), f will be constant. As a result, the slope
remains unaltered and the logarithmic KI2u curve is
simply shifted in the log u direction about log f. The
indetermination of f in our analysis produces uncer-
tainties of 0.2 in the vertical shift of the curve without
affecting the determinations of the stress-corrosion
index n.

Fig. 5. Same as in Fig. 4, but for c coefficients.

Fig. 6. Subcritical crack growth curves (KI2v) for the four relaxation tests. Dotted curves were obtained with the new corrected equations. Dashed

curves shifted on the right were obtained by the classical analytical approximation. See Table 3 for details about the linear fit.
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4. Conclusion

The finite-element analysis performed by Ciccotti [5]
shows that Evans’ analytical approximation is inade-
quate to describe the double torsion loading configura-
tion except in a very narrow region of very thin
specimens. The calculated corrective coefficients allow
one to use a wider region of the specimen and to account

for the influence of some geometrical features like the
depth and width of the side groove, the length of the
initial notch and the inclination of the curved crack
front.

The application of this method to relaxation tests on
lava rocks from the Vulcano volcano in the Aeolian
Islands, and quartz-feldspar sandstones from Castel di
Casio, Italy, showed that the corrected estimates of the

Table 3

The results of our relaxation testsa

Relaxation n ai af LogAE nE LogA n Dn=n

V2-r1 0.13 46 55 @12.7 62.3 @12.0 74.0 +19%

V2-r2 0.13 55 93 @9.1 47.0 @8.2 50.9 +8%

V3 0.22 42 61 @18.0 129.7 @15.7 144.5 +11%

C3 0.18 49 F @14.2 129.9 @11.6 134.9 +4%

an is the Poisson ratio, ai and af the measures in mm of the crack length before and after the test, LogAE and nE are, respectively, the constant term

and the stress-corrosion index obtained with the classical Evans method, LogA and n are the values resulting from our new analysis, Dn=n shows the
relative variation.

Fig. 7. Curved crack front profiles obtained through Eq. (9). The curvature exponent p ranges from 1 to 4 in 10 steps of 0.3.

Fig. 8. Asymptotic values (nc10) of f as a function of the curvature exponent p. f assumes Evans’ value for flat crack front (p ¼ 0) and increases

with p eventually reaching rather large values.
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stress-corrosion index are larger than the ones obtained
through the classical analytical approximation by about
10%. Moreover, an estimate of the error introduced in
the placement of the curves by an inaccurate knowledge
of the crack front curvature was evaluated using the
improved f factors proposed by Pollet [8].
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