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’ INTRODUCTION

As the size of systems goes down, surface effects become
increasingly important. Capillary condensation, which results from
the effect of surfaces on the phase diagram of a fluid, is a
phenomenon that is ubiquitous at nanoscale and occurs in all
confined geometries: divided media, cracks, or contacts between
surfaces.1,2 The very large capillary forces induced by highly curved
menisci usually supersede other interaction forces and have a huge
impact on the mechanical properties of solid contacts.3 The
tribological behavior and stiction phenomena in micro/nanoelec-
tromechanical systems (MEMS/NEMS),4 the cohesion and flow of
powders and granular media,5,6 the friction of sliding nanocontacts
with aging effects, and enhanced stick-slip motion7-10 are just a
few examples of the huge impact of capillary forces at the nanoscale.

The great relevance of capillary forces betweennanoscale objects to
these topics has stimulated the utilization of contact AFM to provide
a more quantitative measurement of the forces acting between the
very sharp probe tip (with a typical radius of curvature of a few
nanometers) and sampleswith variable compositionsor textures.11-16

However, most analyses have focused on the case of dry surfaces, i.e.,
the case of partial wetting for which the liquid-vapor meniscus
connects directly onto the surfaces with a finite or zero contact
angle.17,18 This situation covers only a small part of the wetting
situations favorable for capillary condensation. Liquid condensates
between contacts are indeed prone to appear from an undersaturated
vapor if the solid-liquid surface tension γsl is lower than that of the

solid/vapor γsv,
3 that is if the wetting parameter S = γsv - γsl - γlv

obeys the inequality S > -γlv where γlv is the liquid-vapor surface
tension. The partial wetting case corresponds to the domain-γlv < S
<0.19 In thedomainof perfectwettingSg0, thin liquidfilmsmay also
condense on the surfaces and connect smoothly onto the liquid bridge
so that no liquid-solid-vapor contact lines exist anymore.20

The effect of wetting liquid films on the capillary force has
been investigated quantitatively both theoretically and experi-
mentally by the use of surface forces apparatus involving surfaces
with a very large radius of curvature R. It is now well under-
stood.21-23 The wetting films cause the capillary force to dec-
rease monotonically when the vapor pressure increases, from the
value Fcap/R = 4πγsv in a dry atmosphere down to Fcap/R =
4π(γsl þ γlv) in a fully saturated atmosphere.23 This behavior is
usually not observed for AFM pull-off forces, which often report
an increase of the capillary force with humidity.12 This feature has
been attributed to the roughness of the AFM tip, or samples.14-16

However the experiments of Asay and Kim24 clearly demonstrate
the effect of condensed wetting films on the AFM pull-off forces.
This effect was observed to increase with decreasing humidity up
to several times the typical value Fcap/R = 4πγlv obtained in
saturating vapor. As quoted by the authors, even if the thickness
of wetting films is usually in the nanometric range, these films
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ABSTRACT:We extend to the case of perfect wetting the exact
calculation of Orr et al. (J. Fluid. Mech. 1975, 67, 723) for a
pendular ring connecting two dry surfaces. We derive an
approximate analytical expression for the capillary force be-
tween two highly curved surfaces covered by a wetting liquid
film. The domain of validity of this expression is assessed and
extended by a custom-made numerical simulation based on the
full exact mathematical description. In the case of attractive
liquid-solid van der Waals interactions, the capillary force
increases monotonically with decreasing vapor pressure up to
several times its saturation value. This accurate description of the capillary force makes it possible to estimate the adhesion force
between wet nanoparticles; it can also be used to quantitatively interpret pull-off forces measured by atomic force microscopy.
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cannot be neglected when estimating the capillary force between
nanoscale objects.25,26

In the present paper, we establish an analytical, yet approximate,
expression for the capillary force between surfaces of nanometric
curvature (two identical spheres or a sphere and a plane) in the
presence of wetting liquid films, and we compare it with numerical
solutions of the capillary and disjoining pressure equations. The
analytical expression takes into account the noncircular shape of
the liquid-vapor meniscus due to its axisymmetric curvature, as
well as any type of disjoining pressure and wetting potential
governing the liquid film. Our analytical expression, eq 9, is an
expansion in powers of rc/R and ε/R, where R is the sphere
radius, rc is the equilibrium curvature radius of the interface
(Kelvin’s radius), and ε is the apparent film thickness (defined by
eq 4). The coefficients of this expansion have numerical values
that are independent of the disjoining pressure and wetting
interface potential. The range of validity of the analytical expres-
sion covers a wide range of vapor pressures, and is assessed by a
comparison with numerical solutions of the equilibrium menis-
cus shape. The effect of surface roughness can be easily incorpo-
rated in this expression of the capillary force. We discuss the
application of our expression in three situations: (i) the capillary
force exerted by water condensed between nanometric glass
spheres, using a van der Waals wetting potential; (ii) the effect of
surface roughness on this capillary force; (iii) the comparison
to AFM pull-off force measurements by Asay and Kim24 under
various alcohol vapor pressures.

’ANALYTICAL THEORY

Our starting point is the case of the very large sphere radius
R. rc in which the azimuthal curvature due to the axisymmetric
shape of the liquid bridge can be neglected. Themagnitude of the
azimuthal radius of curvature is indeed of order (2rcR)

1/2. rc, if
R . rc (see Figure 1). The shape of the meniscus connected
to the liquid films covering the surfaces can then be solved in a
2D approximation. This has been done independently by
Derjaguin27 and Legait and de Gennes28 in the context of the
interface potential and disjoining pressure theory. The liquid film
thermodynamics is described by the interface potential Wslv(e)
acting per unit area of the (flat) liquid/gas interface interacting
with the solid surface. The pressure Pliq in the liquid film far from
the bridge is given by the disjoining pressure:

ΠdðeÞ ¼ -
dWslv

de
¼ Pext - Pliq ð1Þ

with Pext the pressure of the atmosphere. For nonretarded van der
Waals forces the disjoining pressure isΠd(e) = -Aslv/6πe

3 where

Aslv is the solid/liquid/vapor Hamaker constant. For long-range
electrostatic interactions, it is Πd(e) = (πεo/8e

2)(kBT/q)
2, where

εo is the dielectric constant and q is the ionic charge; however the
application of the Derjaguin equation in this specific case may be
more questionable due to the larger impact of curvature on surface
forces.29 Short range structural interactions are usually described by
an exponential-type disjoining pressure Πd(e)=K exp(-e/λ),
where K and λ are the amplitude and range of the interaction.29

At thermodynamic equilibrium, the liquid pressure in the film
is the same as in the liquid bridge. The latter is determined by the
capillary pressure drop γlv/rc across the meniscus of curvature
radius rc. This assumes that the direct interaction of the meniscus
with the solid wall is negligible in its central region, that is
Πd(rc) , Πd(e) = γlv/rc. As the disjoining pressure is a rapidly
decaying function of e this is usually satisfied for e < rc. Therefore,
we limit to the domain e < 0.3rc the validity of our analytical
theory of the capillary force. The equilibrium thickness of the film
covering the flat plane far from the bridge is then related to the
meniscus curvature by

ΠdðeÞ ¼ γlv
rc

ð2Þ

If the liquid is volatile, the equilibrium of the liquid bridge
curvature with its vapor phase is given by Kelvin’s law:

γlv
rc

¼ FLΔμ ¼ FLkBT ln
Psat
Pv

ð3Þ

where Δμ is the vapor undersaturation, FL the liquid molecular
density, Pv/Psat the relative humidity, kB the Boltzmann constant,
and T the temperature.

In the region where the meniscus merges onto the wetting
films, its interaction with the solid wall is not negligible, and the
pressure in the liquid is the sum of the disjoining pressure and of
the local capillary pressure. The meniscus curvature is not
constant and decays from rc

-1 to 0. This leads to a local
thickening of the wetting film equal to:27,28

ε ¼ eþWslvðeÞ
ΠdðeÞ ð4Þ

so that the overall geometry is equivalent to a meniscus of
constant radius of curvature rcmerging with a zero contact angle
onto a virtual film of thickness ε. This merging region and the
associated thickening of the wetting film have been directly
observed by an interferometric technique in the case of non-
retarded van der Waals forces by Kolarov et al.30 The capillary
force in this 2D picture is then simply obtained by stating that
when the virtual films come into contact, the capillary force has
the standard value for R.rc with a zero contact angle:3

FcapðD ¼ 2εÞ ¼ 4ð2ÞπγlvR
Here the number (2) between parentheses stands for the
sphere-sphere (ss) case. As the variation of the capillary force
with the distance is linear when R. rc,

3 the maximum capillary
force obtained at contact is

FspðssÞ
2πγlvR

¼ 2ð1Þ 1þ ε

rc

� �
ð5Þ

where sp (respectively ss) refers to the sphere-plane geometry
(respectively sphere-sphere) and the number in parentheses
stands for the (ss) case. This is the expression obtained by
Christenson et al.22 and Charlaix et al.23

Figure 1. Merging of a meniscus on wetting films of nominal thickness e
far from the bridge (not to scale). The dotted line represents ameniscus of
circular shape connected tangentially to a virtual liquid film of thickness ε.
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Our basic assumption to address the case of a small sphere
radius is that the physics of the merging region is not affected by
the additional 3D curvature. The azimuthal curvature of an
axisymmetric surface defined by its profile r(z) around the Oz
axis, equal to 1/r(1þ (dr/dz)2)1/2, becomes indeed negligible in
the merging region where dr/dz diverges. Therefore, as in the 2D
case, the shape of the meniscus is equivalent to a meniscus of
constant mean curvature 1/rc merging with a zero contact angle
on virtual solid surfaces obtained from the real ones by com-
plementing them with a layer of constant thickness ε, as given by
eq 4. But now the mean curvature 1/rc includes the azimuthal
curvature. The problem of an axisymmetric meniscus of constant
mean curvature between a sphere and a plane has been solved by
Orr et al.31 We use their solution, taking a virtual sphere radius
R þ ε to take into account the merging on the complemented
sphere, and a distance D - 2ε between the virtual surfaces. The
solution by Orr’s et al. is expressed in terms of the mean
dimensionless meniscus curvature HR where H = -1/2rc, the
filling angle ψ defined at the level of the contact line on the
sphere, and the contact angles θ1 on the sphere and θ2 on the
plane (see Figure 2):

2HR ¼ Ψ Θ-
1
k
½Eðφ2, kÞ- Eðφ1, kÞ�

�

þ 1- k2

k
½Fðφ2, kÞ- Fðφ1, kÞ�

�
ð6Þ

with

Ψ ¼ 1=ðδþ 1- cos ψÞ
Θ ¼ - cosðθ1 þψÞ- cos θ2

φ1 ¼ - ðθ1 þψÞ þ π=2

φ2 ¼ θ2 - π=2

k ¼ 1=ð1þ cÞ1=2
c ¼ 4H2R2 sin2 ψ- 4HR sin ψ sinðθ1 þψÞ
H ¼ - 1=2rc

δ=D/R is the reduced sphere-plane distance and E, F are the
incomplete elliptic integrals of the first and second kinds. The
sphere-plane geometry corresponds in our case to θ1 = θ2 = 0,
whereas the sphere-sphere geometry is θ1 = 0 and θ2 = π/2.
The capillary force is the sum of the tension force and of the
capillary pressure force:31

F ¼ 2πRγlv½sin ψ sinðθ1 þψÞ-HR sin2 ψ� ð7Þ
The set of eqs 6 and 7 does not permit one to obtain an exact
analytical solution for ψ as a function of rc/R, and thus an
analytical expression of the capillary force as a function of rc/R

and D/R. We propose here to approximate the capillary force by
an expansion in powers of these parameters. The expansion is
performed with the software Mathematica32 and the details are
provided in the Supporting Information. We address both the
sphere-sphere and the sphere-plane case. We find:

F
2πγlvR

¼ Ro 1-
D
2rc

� �
þ R1 1þ D

4rc

� �
rc
R

� �1=2

þ R2
rc
R

ð8Þ

where the Ri have numerical values given in Table 1. We obtain
the maximum capillary force at contact between the surfaces, by
replacing R with R þ ε and D with -2ε in 8:

Fcap
2πγlvR

¼ Ro 1þ ε

rc

� �
þ R1 1-

ε

2rc

� �
rc
R

� �1=2

þ R2
rc
R

ð9Þ

The leading order of this expansion is nothing else than the
capillary force for large sphere radius expressed in eq 5, and
measured in Surface Force experiments.22,23 The filling angle
ψ is:

ψ ¼ βo

ffiffiffi
rc
R

r
1þ ε

2rc

� �
-
π

8
rc
R

ð10Þ

For the sake of simplicity and without restriction we have
assumed in the calculation that both surfaces have similar wetting
properties. In the general case of asymmetric wetting properties,
the overthickness ε should be replaced by the mean value (εs þ
εp)/2 where the εs,p obey eq 4 applied on each surface with its
own disjoining pressure and wetting potential.

Finally, we should mention that expressions 9 and 10 are only
valid if thermodynamically stable wetting films can form on the
surfaces, which requires the grand potential of the wet surface
γsl þ γlv þ Wslv(e) þ eΠd(e) to be lower than the one of the
dry surface, γsv.

20,33 Taking into account eqs 2 and 4 this may be
written as

γsl þ γlv 1þ ε

rc

� �
e γsv ð11Þ

If eq 11 is not verified then the surfaces remain dry.20,33 Multi-
plying eq 11 by 4πR (2πR in the ss case), we get on the right-
hand side the adhesion force between the ideally smooth dry
solids. The left-hand side is the total adhesion force for R . rc,
consisting of the direct solid adhesion force through the liquid,
and of the capillary force given in eq 5. However, expression 9
gives a capillary force that is always smaller than in the R . rc
case. Therefore, for ideally smooth solids the capillary force can
never be larger than the adhesion force between dry solids, which
should be recovered at very low vapor pressure.

’NUMERICAL COMPUTATION OF THE CAPILLARY
FORCE

In order to estimate the accuracy of the approximate expres-
sion established above, we develop in this section a numerical
calculation of the capillary force based on the exact shape of the
liquid-vapor interface that smoothly connects the liquid bridge
to the wetting films. For simplicity reasons, we restrict this
numerical section to the interaction between two spheres. The
starting point of our derivation is the grand potential of the liquid
that connects two wet spheres as shown in Figure 3. The

Figure 2. Pendular liquid bridge between a sphere and a plane.



3471 dx.doi.org/10.1021/la103781y |Langmuir 2011, 27, 3468–3473

Langmuir ARTICLE

potential may be written as34

Ω ¼ 4πγlv

Z ¥

θ0

l½l2 þ lθ
2�1=2 sin θ dθ

þΔμ 4π
Z ¥

θ0

l3 sin θ

3
dθþ 2πR3 tan2 θ0

3
-
8πR3

3

" #

þ 4π
Z ¥

θ0

Wslvðl- RÞR2 sin θ dθ ð12Þ

where l is the distance between the interface and the center of the
sphere, and lθ is the derivative of l with respect to θ. In the right-
hand side of 12, the first term is the solid-liquid interface energy,
the second one is the energy associated with the volume of the
condensed liquid, and the last one takes into account liquid-
solid interactions. The Euler-Lagrange minimization ∂Ω/∂l =
d(∂Ω/∂lθ)/dθ of 12 then yields:

lθθl- 3lθ
2 - 2l2 þ cotan θ

ðl2 þ l2θÞlθ
l

þ ðl2 þ lθ
2Þ3=2 Δμ

γlv
þ R2

l2γlv

dWslvðl- RÞ
de

" #
¼ 0 ð13Þ

where lθθ is the second derivative of l with respect to θ. The
boundary conditions of eq 13 are lθ(π) = 0, l(θ0) cos θ0 = R and
lθ(θ0) = -R sin θo, with θ0 a parameter to be determined. We
solved 13 using an adaptive step size Runge-Kunta algorithm.35

Starting from an initial value θ0, 13 is integrated for increasing
values of θ. The θ0 value is adjusted iteratively to ensure that lθ
vanishes when l = Rþ e. Finally, the force is computed as Fss

(wet)/
2πRγlv = R tan2 θ0/2rc þ R tan θ0.

Figure 4 is a plot of the adhesion force as a function of the
radius of curvature rc/R for different values of e/rc. The cal-
culations are done for non retarded van der Waals forces, i.e.,
dWslv/de∼ e-3.We clearly see that the adhesion force varies with
both rc/R and e/rc. We can compare the numerical results with
the results of the analytical expansion 9. For this, we fit the

function Fss
(wet)/2πRγlv-1=Aþ Brc

1/2þ Crcþ Drc
3/2, for 10-6<rc/

R < 10-2 and for every fixed value of e/rc. The coefficients
A, B, C, and D depend on e/rc. We fit these dependences on e/rc
asA=A1� (e/rc),B=B0þ B1� (e/rc) and asC=C0þC1� (e/rc)
for 10-4 < e/rc < 10-3 The values of the coefficients are
A1 = 1.500 (expected value from numerical expansion 9: 3/2),
B0 = -0.555 (expected -π/4(2)1/2 = -0.555), B1 = 0.407
(expected 3π/16(2)1/2= 0.416) andC0 = 0.349 (expected

1/2-
π2/64 = 0.346). Those agreements validate both the numerical
algorithm and the analytical expansion 9.

Finally we evaluate the overall error on the capillary force
made by using the analytical expansion 9. We compute the force
Fnum using the numerical solution and the force Fana using the
analytical expansion. The absolute difference ΔF = |Fnum -
Fana|/2πγlvR usually increases with rc/R and e/rc. Table 2 shows
the maximum force error ΔF for all values of rc/R and of
e/rc lower than the values reported in the heads of the
columns or lines. We see that the error is always lower than
a few percents, except when rc/R and e/rc are together of
order ∼0.3.

Table 1. Numerical Values of the Coefficients in the Analytical Expressions Eqs 9 and 10 of the Capillary Force and Filling Angle

Ro R1 R2 βo

sphere-plane 2 -(π)/(4) = -0.7854 -(π2)/(64) = -0.1542 2

sphere-sphere 1 -(π)/(4(2)1/2) = -0.555 (1)/(2) - (π2)/(64) = 0.346 (2)1/2

Figure 3. Liquid bridge connecting two spheres.

Figure 4. Dashed lines: normalized adhesion force evaluated numeri-
cally as a function of the square root of the reduced radius of curvature
rc/R. The dotted lines are the analytical expansion (eq 9) for the force.
Different curves correspond to different values of e/rc.

Table 2. Maximum ErrorΔFMade on the Capillary Force by
Using the Analytical Expansion 9 with Coefficients from the
Last Line of Table 1 Instead of the Numerical Computationa

rc/R < 0.01 rc/R < 0.03 rc/R < 0.10 rc/R < 0.3

e/rc < 0.01 1.9� 10-4 6.3� 10-4 2.3� 10-3 4.6 � 10-3

e/rc < 0.03 4.3� 10-4 1.4� 10-3 6.0� 10-3 1.8� 10-2

e/rc < 0.10 8.5� 10-4 2.8� 10-3 1.3� 10-2 3.6� 10-2

e/rc < 0.30 9.5� 10-3 9.5� 10-3 3.8� 10-2 1.6� 10-1

a Errors are in unit of 2πRγlv. Errors are always lower than the maximal
error displayed here when rc/R is lower than the column value and e/rc is
lower than the line value. The calculation is made for a power law-type
interface potential in the form Wslv(e) ∼ e-n with n = 3, 4, and 5.



3472 dx.doi.org/10.1021/la103781y |Langmuir 2011, 27, 3468–3473

Langmuir ARTICLE

’DISCUSSION

We illustrate our results by computing the capillary pull-off
force exerted on a sphere of radius 10 nm modeling a sharp
silicon AFM tip covered by its native oxide, in contact with a silica
surface in a water vapor atmosphere. As wetting potential, we use
nonretarded van derWaals interactions with a Hamaker constant
Aslv = 0.85 � 10-20 J.3 We do not illustrate here the effect of
structural interactions, whose amplitude and range depend on
the surface density of silanol groups.36

As shown in Figure 5, even for this sharp tip the analytical
expansion provides a very good approximation of the capillary
force, within 5%, up to a relative humidity of about 80%. The
Kelvin radius of the water meniscus and the thickness of the
wetting films are also plotted on the same graph. The same
calculation is performed for a colloidal probe made of a silica
sphere of radius 1 μm glued on the cantilever. For this radius, the
analytical expression is almost not distinguishable from the exact
capillary force.

Figure 5 shows that, in the case of perfect wetting, the capillary
force decreases with increasing humidity. This is expected since
in this case the surface tension of the dry solid is higher than the
sum of the liquid-solid and liquid-vapor surface tension, which
determine respectively the adhesion work of the surfaces in the
liquid phase and the capillary force. The decrease of the pull-off
force with increasing humidity has been observed in SFA
experiments.23,37 It is usually not found on the full range of
relative humidity in AFM pull-off forces, where to the contrary
the pull-off force increases with relative humidity at low
humidity.12 The increase of the capillary force with humidity is
usually attributed to the roughness of the AFM tip or sample,
preventing the surfaces to come to close contact.14-16 In a model
proposed by Rabinovitch et al.,15 the effect of roughness on the
capillary force is simply taken into account by introducing an
offset distance ho which is the average distance between the
surfaces when the highest asperities are in contact. The adhesion
force is then assumed equal to the dry adhesion force if the
meniscus height is lower than ho, otherwise it is kept equal to the
capillary force between smooth surfaces at a distanceD = ho. This

model is easily transcribed in our analytical expression, by
replacing D with ho - 2ε instead of -2ε in eq 8.

Finally, we compare in figure Figure 6 our analytical expres-
sion to the experimental measurements of Asay et al.24 of the
AFM pull-off forces between a silicon cantilever and a silicon
wafer in alcohol atmospheres. They measured the adsorption
isotherms as well on the same samples. We fit these isotherms
with a disjoining pressure of the form Πd(e) = K exp(-e/λ),
corresponding to short-range structural interactions.29 The ana-
lytical capillary forces corresponding to these disjunction pres-
sures, for the tip radius R = 15 nm used in the experiments, are
plotted in figure Figure 6 without adjustable parameters. The
physical constants of the liquids taken from ref 24 are γlv = 21.8
mN/m and FL = 1.7 � 104 mol/m3 for ethanol, and γlv = 24.6
mN/m and FL = 1.1 � 104 mol/m3 for butanol. The theoretical
capillary force is in very good agreement with the measured pull-
off forces, except at vapor pressure above 90% relative humidity
where the Kelvin’s radius becomes as large as the tip radius. It
should be mentioned that the contribution of direct van der
Waals interaction of the solids through the liquid, estimated from
a typical Hamaker constant of 10-20J and a cutoff distance of

Figure 5. Normalized adhesion force between two silica spheres of
radius R as a function of the relative humidity Pv/Psat. The nominal
wetting film thickness and the Kelvin radius are plotted as well. The
wetting potential corresponds to van der Waals interactions with a
Hamaker constant Aslv = 0.85 � 10-20 J. Plain lines are the numerical
calculations of the capillary force obtained for R = 10 nm and R = 1 μm;
dotted lines are the analytical expansions 9.

Figure 6. Top: adsorption isotherm of ethanol, 1-butanol and 1-penta-
nol on siliconwafer, measured by Asay andKim.24 The continuous line is
the best fit of the isothermwith a disjoining pressureΠd(e) =K exp(-e/λ).
K = 7� 108N/m2 and λ = 2.8 Å for ethanol andK= 8.3� 108N/m2, λ=
2.4 Å for butanol. Bottom: Normalized AFM pull-off forces between a
silicon cantilever of radius R = 15 nm and a silicon wafer in ethanol,
1-butanol, and 1-pentanol atmospheres.24 The data were replotted. The
continuous lines are the analytical expression 9 of the capillary force
obtained without adjustable parameter from the best fit of the adsorption
isotherms. Dashed lines correspond to the large sphere approximation 5.
The dotted lines are the calculated Kelvin radii.



3473 dx.doi.org/10.1021/la103781y |Langmuir 2011, 27, 3468–3473

Langmuir ARTICLE

0.2 nm, is negligible compared to the capillary force. The pentanol
is not plotted since its isotherm cannot be fitted with a simple
power law or exponential disjoining pressure.

’CONCLUSION

We have established a simple analytical expression of the
capillary force between highly curved surfaces in the presence of
wetting films, which we believe is of interest for predicting
quantitatively the adhesion force between nano-objects. This
expression can be used to estimate the adhesion between
nanoparticles of high surface energy, whose surface is often
covered by a contaminating liquid layer. We have also shown
that it provides a simple method for the quantitative interpreta-
tion of AFM pull-off forces in a controlled vapor atmosphere.
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