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Abstract

Fracture is a very complicated phenomenon and its dynamics is not well described up to now by a consistent physical and/or

mathematical model. In this paper we synthetically present the main experimental and theoretical results for the peeling of an

adhesive tape, i.e. a viscoelastic dissipative system, viewed as a two-dimensional fracture propagation. From recent peeling

experiments, using a common adhesive tape, the emergence of hierarchical structures in a broad range of time scales was observed in

a definite region of the stick–slip regime, and this is one the indicators commonly used speaking of complex systems.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The fracture process, which is the object of our
investigation in this work, is one of the most compli-
cated phenomena of the physical world [1]. Fracture
results of the interplay between the creation of new
interfaces and the elastic deformation of the bulk
material. While the creation of new interfaces is
dominated by the properties of elasticity of the surround-
ing medium and the amount of accumulated strain
energy, the constitutive properties of the medium are
strongly affected by the fracture propagation. In the full
three-dimensional fracture of a brittle material (which is
commonly referred to as ‘‘rupture’’), the medium
generally undergoes a progressive process of diffused
damaging which then spontaneously concentrates into
some region that is gradually crushed into fragments that
slide and roll on each other, involving a great deal of
different physical phenomena such as friction, adhesion,
and plastic deformation [2,3]. Modeling such a compli-
cated mixture of phenomena is almost hopeless even with
the spreading power of modern computers [4]. Some
simpler context must be chosen where a smaller number
of phenomena are considered along with a simplified
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geometry. The peeling of an adhesive tape provides an
excellent example since the phenomenon is reduced to the
propagation of a single coherent fracture front along a
predetermined bi-dimensional interface [5]. Moreover,
the dissipative nature of the viscoelastic systems has the
significant effect of stabilizing the fracture dynamics.
Even with these simplifications, the phenomenon remains
highly non-linear and the dynamics shows a variety of
instabilities and structures that suggest a possible under-
lying complexity. Furthermore, the peeling of an adhesive
tape can be easily set up in experiments that provide very
long data series from which it is possible to extract useful
information on the non-linear features of the system.

The paper is organized as follows: Section 2 provides
some basic knowledge about fracture mechanics in the
context of the peeling of an adhesive tape; Section 3
describes the basic phenomenology and previous experi-
ments; Section 4 presents different dynamical models for
the stick–slip dynamics; Section 5 illustrates the new
experimental results and Section 6 concludes with a
discussion of the open problems.
2. Fracture dynamics and the peeling of an adhesive tape

In this section we will focus on the propagation of a
plane crack in linear or non-linear elastic solids and
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non-linear viscoelastic systems, giving some general
concepts and formulae concerning fracture mechanics,
peeling and stick–slip dynamics [6].

The propagation of a crack along a predetermined
interface is governed by an energy balance condition
determined by Griffith [7]. More precisely, a crack will
advance if the strain energy release rate G¼ qUM=qA;
i.e. the amount of mechanical energy UM released by the
system per unit new crack area A; is larger than the
surface energy of the medium. When the dissipative
phenomena produced at the crack tip are relevant, the
above condition can be restated into an equation
relating the strain energy release rate G to the crack
tip velocity V

G ¼ FðV Þ; ð1Þ

where FðV Þ is an empirical function which has the
characteristic sigmoidal shape represented in Fig. 1.
Although the qualitative shape of FðV Þ was explained
by Maugis and Barquins [8], a microscopical model for
this curve is still lacking.

We refer to ‘‘peeling’’ when a thin film of material is
separated from a rigid substrate (Fig. 2). The relation
between the fracture mechanics and peeling was
established by Kendall [9], who linked the strain energy
release rate G to the pull force F applied with a given
angle y to the free end of the film, of initial width b and
Fig. 1. Empirical G ¼ FðV Þ curve from [12]. The stick–slip cycles are
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Fig. 2. A film of width b and thickness h is peeled apart from a flat

rigid substrate. The force F is applied at an angle y (peeling angle)

relative to the rigid substrate.
thickness h; E being the Young modulus (Fig. 2)

G ¼
F

b
� ð1� cos yÞ þ

F

b

� �2

�
1

2 � E � h
ð2Þ

The first linear term is related to the geometric
configuration, and the quadratic one derives from the
strain energy of the new peeled film. The Kendall
equation is well established since it derives from the
conservation of energy and is furthermore confirmed by
numerous experiments. For peeling angles y > 30

�

(which is generally verified in our stick–slip experiments)
Eq. (2) reduces to

G ¼
F

b
� ð1� cos yÞ ¼ FðV Þ or F0ðV Þ ¼ F � ð1� cos yÞ

ð3Þ

where F0ðV Þ is called the adherence force. As discussed
in [10], Eq. (3) is some sort of a state equation, i.e. it
describes the relation between the applied force and the
crack tip velocity in stationary equilibrium conditions.
However, it is expected to work also if the evolution of
the variables is not too rapid in relation to some
characteristic time which is still not estimated. So its
applications in highly dynamical conditions and in the
presence of strong non-linearity is very delicate and
probably not completely correct in order to describe the
instability propagation.

The stick–slip dynamics (or run-arrest) that appears
in the peeling of an adhesive tape under certain
conditions discussed later, is observed in a variety of
phenomena like rock friction, earthquake dynamics, or
tearing of rubber, etc. This intermittent motion (or self-
sustained oscillations) is created by a mechanism that
generates cycles of crack growth (or sliding) instability
followed by subsequent arrest. The stability and
instability alternation in peeling is produced by the
competition between the change in the driving force (or
energy release rate) and the change in the crack-growth
resistance.
3. The previous main experiments and the empirical

results

In general, the experiments on the peeling of an
adhesive tape were performed using two different set-
ups. In the first one the peeling is studied when a
constant traction velocity V0 is imposed onto the free
end by the action of an electric motor (Fig. 3). In this
case, with a fixed geometry, V0 is the only dynamical
control parameter, and the limit between the adhesive
tape ribbon and the free tape may be seen as a crack tip
propagating with speed V : In a second type of
experiment the peeling is studied when a constant
applied load is clamped to its extremity and the control
parameter is the imposed force.
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Fig. 3. The film is wound to a reel of radius R rotating with an angular

velocity o: The apparent position of the fracture is indicated by the

angle a: V0 is the traction velocity at point O’ at a distance L from the

fracture front. y is the peel angle.
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Barquins and Maugis [11,12] performed a series of
experiments at constant traction velocity. The observed
dynamics exhibits the following behavior: at slow traction
velocity the tape is peeled regularly and the dynamics is
stationary; at high velocity the dynamics is also regular,
but very rapid; in the intermediate range of V0 a stick–
slip phenomenon appears, the peeling of the tape being
jerky with emission of a characteristic noise. For
increasing values of the traction velocity, the stick–slip
motion is at first rather periodic, then it becomes more
and more irregular. Moreover, an empirical G ¼ FðV Þ
curve was traced (Fig. 1) showing that the strain-energy
release rate varied as a power law of the crack velocity V :

FðV Þ ¼ w þ w � aðTÞ � Vn1

with

n1 ¼ 0:35 for the first stable branch; and

FðV Þ ¼ GC �
V

V1

� �n2

with

n2 ¼ 5:5 for the second ðrapidÞ stable branch:

where aðTÞ is a parameter depending on the ambient
temperature T and w is the Dupr!e energy of adhesion.

In an experiment where the peeling was produced by a
constant applied load, with the help of a set of different
dead loads [13], the first stable region was found to be
actually metastable, an unexpected stick–slip regime
appears which was related to the inertia of the falling
load, and the rapid stable branch was confirmed. The
most relevant result was that the average value /VS of
the measured peeling velocity in the stick–slip regime
remains approximately constant increasing the value of
the load of one order of magnitude [13].

Obviously, in all these experiments, we must consider
some influences due to temperature and relative
humidity. Our adhesive tape is substantially composed
by polymer melts, made of long flexible molecules that
naturally provide the properties of sticky materials:
under stress, at long time scales, they have the properties
of viscous liquids, and at short time scales they deform
as elastic solids. As it is well known, their properties
depend strongly on temperature, especially near the
glass transition temperature [14] where the polymer
transforms progressively from a viscous material to a
brittle solid. However, we want to study the fracture
propagation and not the phase transition of the system;
if temperature and humidity do not change too
drastically, they do not affect the dynamics in a
significant way. More precisely, since the stick–slip
dynamics is very fast (the slowest cycles have a period of
one second), it is not affected by long term environment
variations, and even the long series of events are taken in
substantially unchanged conditions.
4. The model

As a matter of fact, if one observes finely the
macroscopic fracture line, he discovers that it is
composed of a huge number of microfractures and
microfilaments, but at present a microscopic model for
the adhesion force and the crack in a viscoelastic system
does not exist. This is the main difficulty in order to give
a deep physical interpretation of the investigated
phenomenon, i.e. to understand, describe and explain
the fracture evolution. So we are constrained at the
macroscopic level and generally the authors model the
system by means of dynamical equations.

The first model [11] only takes into account the elastic
degree of freedom, writing the equations

’G ¼ �
k

b
� ðV � V0Þ

G ¼ FðV Þ

8<
: with y ¼

p
2

ð4Þ

where k is the stiffness of the free portion of the adhesive
tape and b; its width. System (4) explains the stability of
the positive-slope branches of the curve FðV Þ; and also
the presence of periodic stick–slip cycles when the traction
velocity is in the intermediate domain, although it needs
the assumption that speed jumps occur when the crack
speed crosses the two critical values as shown in Fig. 1.

A common method to model the dynamical systems
which have an unstable and/or irregular behavior is
increasing the number of degrees of freedom. Following
this, a second step was to add the roller inertia [15,13]. If
we assume G ¼ FðV Þ � @Uk=@A; with Uk ¼ 1

2
� I � o2;

where I is the moment of inertia and o; the angular
velocity, we can write the equations

’G ¼ �
k

b
� ðV � V0Þ

’V ¼
b

m
� ½G � FðV Þ	

8><
>: with y ¼

p
2
and m ¼

I

R2
ð5Þ

which represent a two variable model. Choosing the
fixed point ½V0;FðV0Þ	 as the origin and letting x ¼
V � V0 andF ðxÞ ¼ FðV Þ � FðV0Þ; Eq. (5) become the
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well-known Lienard equation

.x þ m � o � f ðxÞ � ’x þ o2 � x ¼ 0; ð6Þ

where f ðxÞ ¼ @F=@x; and m and o are constant para-
meters. This equation is known to have solutions in the
form of limit cycles when f ðxÞo0: The transition from
stable stationary dynamics to periodic stick–slip cycles is
thus described as a Hopf bi-furcation occurring when
the slope of FðV Þ changes from positive to negative.
This two variable model produces results fitting the
experimental data only when applied to the initial part
of the stick–slip region where the phenomenon is
periodic. But when increasing the traction velocity the
self-sustained oscillations become more and more
irregular, and System (5) is unable to describe and to
predict the observed behavior.

Maugis and Barquins [11,12] are quite conscious of
this: ‘‘the model is more complicated when the variation
of the peel angle is taken into account, which gives a
third degree of freedom (y) allowing a road to chaos
when limit cycles are changed into strange attractors’’.
Following this suggestion Hong and Yue [16] added a
third variable (the peeling angle y or equivalently the
position a (Fig. 3) of the crack tip) obtaining the system1

F � ð1� sin aÞ ¼ F0ðV Þ;

I � ’o ¼ F � R � sin a;
’F ¼ k � ½R � sin a � ’a� ðV � V0Þ	;

R � ’a ¼ V � o � R: ð7Þ

Solving these equations numerically the authors affirm
that chaotic orbits are present in a narrow range of the
traction velocity (they found three positive Lyapunov
exponents). The stick–slip would thus be a deterministic
chaotic phenomenon and the problem seemed to be closed.

However, the issue appears to be more complex. If we
study Eq. (7) more finely [17] we find out that the
proposed solutions were obtained imposing jumps of the
crack velocity V as in the first model discussed above.
Using the first equation in System (7) to eliminate a we
can rewrite the system in terms of a set of three
equations in three variables ðF ;V ;oÞ [10]:

’F ¼ �k �
F � F0ðV Þ

F
� ðV � o � RÞ � ðV � V0Þ

� �
;

’V ¼
1

dF0=dV
	 


ðV Þ


 ’F �
F0ðV Þ

F
� F �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1�

F0ðV Þ
F

� �2

�

s
V � oR

R

2
4

3
5;

’o ¼
R

I
� ½F � F0ðV Þ	 ð8Þ
1This is actually a slightly modified set of equations due to different

reference frame conventions. Moreover, Hong and Yue approximated

sin a with a:
which are valid for dF0=dVa0 and Fa0; with two
singular points at V ¼ VC and V ¼ VA: The numerical
solutions of Eq. (8) admit nice non-periodic cyclic
solutions only if they are forced to avoid the singula-
rities, by jumping from one branch to the other as in
Fig. 1 when the critical velocities are encountered.
Without that assumption, System (8) does not provide
any physical solution.

Moreover, we should also point out that a well-defined
route to chaos does not exist. And we should also
remember that the equation F � ð1� sin aÞ ¼ F0ðV Þ is
derived in stationary conditions. Therefore, it is not so
natural and obvious to impose it as a constraint in a highly
dynamical regime [10]. So we argue that the deterministic
chaos in the irregular peeling dynamics seems to be rather
artificial and not completely proved as intrinsic to the
phenomenon. At this point, we can guess that the
philosophy based on increasing the dynamical variables
number in order to have a model able to describe the
irregular stick–slip regime, is not the more suitable one.

The phenomenon of instability propagation in a
viscoelastic medium could be more complicated than a
‘‘simple’’ dynamical system and could have some
characteristics proper to a complex system [18,19]. This
criticism has stimulated further theoretical and experi-
mental research. The aim was to have a more accurate
knowledge of the stick–slip propagation, firstly empiri-
cal. The highly non-linear phenomena as the fracture
dynamics produce really unpredictable evolutions. In
order to extract useful information on the motion from
experiments, we must record sufficiently long time series,
i.e. sequences of data representing the time evolution of
one or more observables. After that, we can use the
statistical analysis, or the geometrical reconstruction of
the attractors in a suitable phase space, or some other
technique to investigate the dynamics. The general
philosophy of this approach is to draw out a physical
meaning from an empirical signal, bypassing the knowl-
edge of the underlying dynamics and/or the correspond-
ing equations [20,21]. In this optics, we can search the
significant points (bi-furcations and so on) and even-
tually we can detect the emergence of hierarchical
structures, one of the most significant complexity
indicators [22]. The problem will be to choose the good
observable, i.e. the more proper observable to be
measured with a sufficient precision and over a
convenient long time. For this, we have set up a new
experiment and the first provisional results show a stick–
slip behavior more complex than we could expect basing
strictly on the theory of dynamical systems [23].
5. The new experiment

The new experiment that has been performed aims
at a complete description of the phase space of the
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Fig. 4. Acoustic signal (AS, heavy line) recorded in a regular (a) and in

an irregular (b) stick–slip region. The dotted signal is the FFT based

index used for the automatic recognition of the slip events along with

its threshold value (dash dotted).
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stick–slip dynamics and its evolution as a function of the
control parameter V0:

The experimental assembly is the classic one with
constant traction velocity. This condition is enforced
with the aid of a very stiff motor that unrolls the tape on
a cylindrical core (Fig. 3). We used an adhesive tape
50mm wide, with a polypropylene backing covered by a
rubber adhesive product, commonly utilized to close
parcels [23]. Stable peeling is observed for traction
velocities smaller than a first critical velocity VC or
larger than a second velocity VA: In the intermediate
range the peeling is jerky and the stick–slip dynamics
becomes more and more complicated with rising
traction velocity. We focused our attention on this
region.

As a first experimental step, we chose to measure the
time interval between two subsequent events, i.e. our
observable is the period Dt determined by the analysis of
the acoustic emissions produced by the stick–slip events.
Usually, in physics, and especially in dynamics, the time
is not a variable, but rather a parameter. However, in
our situation the dynamical equations proposed to
describe and explain the stick–slip at least partially
failed. The time interval Dt is the indicator that we can
measure more precisely in order to evaluate the
irregularity of the dynamics. Obviously, the knowledge
of the time interval series is not sufficient to model
completely the dynamics. For example, we cannot
discover if we are in the presence of space–time chaos
only by numerical time series of periods, even if these
series were chaotic. But at least our philosophy can put
into evidence the time structures underlying the phe-
nomenon and give a criterion to discriminate different
dynamical regimes, as a function of the control
parameter.

5.1. Analysis of data

Long records of events have been acquired for
many values of the control parameter, i.e. the traction
velocity V0; spanning the unstable stick–slip regime.
Since the sequences may involve thousands of events,
some automatic recognition process is necessary for the
analysis of the acoustic measurements.

For low values of the traction velocity, the stick–slip
events are clearly separated and regular. They appear as
abrupt acoustic bursts, followed by a gradual oscillating
decay. A simple criterion based on a threshold trigger
followed by blind time window is enough.

When the traction velocity grows to higher values, the
events become more and more frequent and irregular
both in timing and intensity, making their separation
problematic. A simple algorithm is no longer sufficient
and some more elaborate criterion was developed. For
this reason we performed a moving window Fast
Fourier Transform on the signal and built a new index
based on the integration of the high frequency acoustic
power. Such an index is plotted in red in Fig. 4 and is
evidently well correlated to the events.

This method allowed us to identify the events up to a
traction velocity V0 ¼ 10 cm s�1 with an efficiency better
than 90%. After that, the oscillations in the signal
appear to be almost continuous. A possible interpreta-
tion is that chaos and/or turbulence is completely
installed [24]. But at present we cannot exclude that
we have reached the limit of resolution of our apparatus,
and that we are not able to distinguish the events.

5.2. The emergence of hierarchical structures

Although the stick–slip cycles are generally not
periodic, it is interesting to plot the average period as
a function of the traction velocity (Fig. 5). In first
approximation the average frequency is proportional to
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the traction velocity and a linear fit provides the relation

Vm ¼
1

oT >
¼ 0:53 Hz �

V0

2:1 mm s�1

� �
:

Actually, the cycles are only quasi-periodic for low
traction velocities, then they become more and more
Fig. 5. Average frequency (1=/TS) of the stick–slip cycles as a

function of the traction velocity V0:

Fig. 6. Distribution of the time interv
irregular with increasing speed. The analysis of the time
intervals has put into evidence that the dynamics goes
through a series of progressive complications when the
traction velocity V0 passes some subsequent critical
values. In particular, there is a first low velocity domain
in which the cycles are approximately periodic and for
which the period is initially about 1 s and then
diminishes as the traction velocity is increased (Fig. 6).
This domain is followed by the appearance of sparse
rapid events which have a period (here simply meaning
the time interval between two subsequent events) that is
a multiple of the fixed short time interval t1 ¼ 0:02 s
(Fig. 7). The events of double or triple period become
progressively more frequent and clustered leading to the
establishment of an ordered structure with only three
possible periods at a traction velocity V0 ¼ 3 cm s�1,
which will be studied in more detail later. Further
increasing the traction velocity, the multiple period
events decrease in relative frequency until a new regular
regime is observed with substantially periodic events at
the short time interval t1 ¼ 0:02 s. This time interval
does not change with traction velocity up to another
critical value where the cycles undergo a second bi-
furcation with the appearance of sparse events with a
duration multiple of a new shorter fixed time interval
als for V0 ¼ 2; 4 and 6mms�1.
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Fig. 7. Distribution of the time intervals for V0 ¼ 2; 3, 4, 5, 6 and 7 cm s�1.
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t2 ¼ 0:001 s, which is about 20 times shorter than the
previous one. These measurements are still in analysis,
due to the increased difficulties of separating such a
dense series, but we can anticipate that a new regular
structure with fixed multiple periods is again developed.
At higher velocities the acoustic signal is mixed to such
an extent that we cannot distinguish any event at the
present state. However, at a traction velocity of 3m s�1

the peeling becomes again stable without the crackling
noise and it remains stable until the reach of the
maximum traction velocity of the engine 6m s�1.

In order to verify that the observed structures are
not generated by artifacts we reanalyzed the most
significant datafiles with a standard sound editing
software and checked each single event by visual and
acoustic inspection. Despite some minor mismatch with
the automatic recognition technique, more than 90%
of the slip events were confirmed and the structures of
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the time interval distribution were shown to be a real
effect.

We can resume complication cascade like follows:

* up to 0.7mm s�1: stable peeling;
* at 0.7mm s�1 beginning of regular stick–slip. Time

periods fall with growing traction velocity;
* at 1 cm s�1 apparition of first multiplets with

DtE0:02; 0.04, 0.06 s. The structure develops up to
3 cm s�1, then it concentrates on the shortest interval;

* at 6 cm s�1 apparition of sub-multiplets with
DtE0:001; 0.002, 0.003 s. The structure develops,
but the signal is lost at 10 cm s�1;

* at 3m s�1 the peeling becomes again stable with a soft
hum, up to the maximum traction velocity of the
engine 6m s�1.

5.3. Developments

Since dynamic modeling was proven to be unsatisfac-
tory in describing such a complex phenomenology, the
data are now being analyzed with a different approach,
that is by a statistical analysis of the series of time
intervals, with the aim of investigating the correlation
between subsequent cycles and extracting the predictive
information hidden in the data [25].

In particular, we analyzed the series of time intervals
of the data with V0 ¼ 3 cm s�1, for which the intervals
only have the three multiple durations (see Fig. 7). In
Fig. 8 the same data are represented in the phase space
fDtðnÞ;Dtðn þ 1Þg to put into evidence the establishment
of correlations and structures. Preliminary statistical
analyses show that the subsequent intervals are not
Fig. 8. Correlation between adjacent events of the three level structure

(V0 ¼ 3 cm s�1) in a phase space {DtðnÞ;Dtðn þ 1Þ}.
independent, but they are neither well described by a
first-order Markov process. We are presently evaluating
the predictive power of the series and the presence of
non-linear correlations by an evaluation of the embed-
ding dimension.
6. Conclusions

As we have seen, the main dynamical models
constructed to explain the peeling evolution of an
adhesive tape can predict correctly only the stationary
behaviors and the approximately periodic stick–slip
cycles. But when the stick–slip becomes very irregular
the proposed models are insufficient even if we increase
the number of degrees of freedom.

On the other hand, the results of new experiments
show that the stick–slip dynamics is more rich and
complicated than a simple bi-furcation’s route to chaos.
We observe hierarchical structures in a definite traction
velocity range that can suggest the emergence of
complexity when a fracture is produced and evolves in
a viscoelastic system.

It could be possible that the observed complex
dynamics leads to time chaos, but a statistical inter-
pretation seems more plausible: for high traction
velocities the peeling in the stick–slip regime could not
any longer be described by dynamical equations, but it
would rather be the result of the interaction of a large
number of degrees of freedom cooperating to constitute
a self-organized system far from equilibrium.

At last, we want to underline how a common Scotchs

roller can be so enigmatic and full of mystery to
justify the ancient saying ‘‘I know that I don’t know’’.
Perhaps this sentence could be the deep meaning of
‘‘complexity’’.
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