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Design principles for superamphiphobic surfaces

Hans-Jürgen Butt,*a Ciro Semprebon,b Periklis Papadopoulos,a Doris Vollmer,a

Martin Brinkmannbc and Matteo Ciccottid

To predict the properties of superamphiphobic layers we analyzed the wetting of a square and a hexagonal

array of vertical pillars composed of spheres (radius R) partially sintered together. Apparent contact angles

above 150� are obtained by pinning of a non-polar liquid surface at the underside of the top sphere

resulting in a Fakir or Cassie state. Analytical equations are derived for the impalement pressure in the

limiting case A0 [ R2, where A0 is the area of the regular unit cell containing a single pillar. The case of

close pillars is investigated numerically. By balancing forces at the rim of a drop, we calculate the

apparent receding contact angle. To describe drag reduction of a flowing liquid we calculate the

apparent slip length. When considering pressure-induced flow through cylindrical capillaries of radius rc,

significant drag reduction occurs only for thin capillaries. The mechanical stability with respect to normal

forces and shear is analyzed. Nanoscopic silica glass pillars would be able to sustain the normal and

shear stresses caused by capillary and drag forces. For a high impalement pressure and good mechanical

stability A0 should be small and R (respectively the neck diameter) should be large, whereas a large A0

and a small R imply low contact angle hysteresis and high slip length.
Introduction

Superhydrophobic surfaces are dened by a contact angle with
water of 150� or higher and a sliding or roll-off angle below 5–
10�. Superhydrophobic surfaces have been made in different
ways and they have been analyzed extensively. The interest is
to a large extent driven by their potential applications as
self-cleaning or antifouling coatings.1 In addition, super-
hydrophobic surfaces can reduce hydrodynamic drag of
water.2–8

Superhydrophobicity is based on two principles:9 a low
surface energy of the solid surface, usually by coating
the surface with a uorinated hydrocarbon, and an increased
surface roughness, for example by micropatterning. One model
superhydrophobic layer is a regular array of pillars, which are
chemically modied to render them hydrophobic. To reach
apparent contact angles above 150� and a contact angle
hysteresis below 5� the superhydrophobic layers are usually
designed in a way that air is entrained and the drop is sus-
pended on top of the pillars. This is called the Cassie or Fakir
state (Fig. 1A).
ch, Ackermannweg 10, D-55128 Mainz,

for Dynamics and Self-Organization, Am

66123 Saarbrücken, Germany

NRS, UPMC, ESPCI Paristech), 10 rue
The apparent, macroscopic contact angle Qapp of the liquid
observed on a length scale much larger than the scale of the
microstructures and the material contact angle Q are tradi-
tionally related by the Cassie–Baxter equation:10,11

cos qapp ¼ r4scos q � (1 � 4s) (1)

here 4s and (1 � 4s) are the area fractions of the projected
liquid–solid and liquid–vapor interface, respectively. The Wen-
zel factor r $ 1 is the ratio of true to projected area of the wet
substrate. It accounts for the non-at surface topography of the
pillars.12

The Cassie–Baxter model (eqn (1)) is derived from a balance
of interfacial and surface energies assuming that the Cassie
state is at least metastable. Under certain conditions, however,
the Cassie state may become unstable causing the liquid to
penetrate the space in between the pillars. This impalement
transition into the so-called Wenzel state can be observed if the
pressure difference between liquid and vapor phases exceeds a
certain threshold value.
Fig. 1 Schematic of a sessile drop on an array of pillars in the Cassie (A) and
Wenzel state (B).

This journal is ª The Royal Society of Chemistry 2013
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Fig. 2 Schematic of the superamphiphobic layer consisting of pillars of sintered
spheres from side and top view. The liquid is suspended on top in the Cassie state.
If no pressure is applied, the liquid surface is planar. With pressure the contact line
moves downwards and the interface starts to curve.
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Superamphiphobic surfaces show high contact angles (>150�)
and low sliding angles (<5 to 10�) with water and non-polar
liquids,13,14 extending the advantages of superhydrophobic
surfaces to oily liquids. They are less prone to contamination, so
potential applications are for antifouling coatings and for drag
reduction.1 To make superamphiphobic surfaces it is not suffi-
cient to use materials with low surface energy and roughen the
surface. Since no oil shows a Young’s contact angle above 90�

with any planar solid surface, overhanging structures are
required to fabricate superamphiphobic surfaces.14,15 Because of
this additional requirement it is more difficult to fabricate
superamphiphobic surfaces than superhydrophobic ones.
Strategies employed are either spontaneous bottom-up,13,16–20

lithographic top-down,14,21 or combined approaches.22–24 The
bottom-up approach is usually technically less demanding,
potentially simpler, more likely to be defect-free, and extends to
sub-100 nm building blocks. In particular, structures consisting
of regular arrays of differently shaped regular structures of pre-
determined shape and size have been made to address funda-
mental questions.11,25–28 Also, overhanging structures formed by
brous structures have been considered.29,30

Many superhydrophobic and superamphiphobic surfaces are
made of (or terminate in) spherical structural elements.17–20,23,31

To better understand superamphiphobicity, we consider a model
structure made of spheres all of similar radius R. The spheres are
supposed to be sintered together and form vertical pillars,
assumed to be arranged in a two-dimensional regular pattern. A
non-polar liquid on top of any superamphiphobic layer is only
metastable; once the liquid impales between the pillars and wets
the bottom surface it remains there. This is the Cassie-to-Wenzel
or impalement transition and must be prevented to preserve the
superamphiphobic properties. We consider the simplest case,
that of a liquid, e.g. a drop, carefully placed on a super-
amphiphobic structure. First, we calculate the impalement pres-
sure. That is the maximum pressure allowed by the geometrical
constraints of the pattern before the Cassie state collapses and
the liquid changes to the Wenzel state. Pressure may be exerted
by the capillary pressures of a sessile drop or an external hydro-
static pressure. Second, we relate the microscopic parameters, in
particular the material contact angle Q, to the apparent
advancing and receding contact angles Qapp

a and Qapp
r . Third, we

calculate the mechanical resistance of the layer to shear stress.
Fourth, we consider hydrodynamic ow of a liquid through a tube
or capillary coated at the inside with a superamphiphobic layer.
We calculate the apparent slip length from microscopic param-
eters and relate it to drag reduction and ow enhancement.

Designing superhydrophobic surfaces has been described in a
number of publications (e.g. ref. 25, 26 and 32–34). With respect
to systematically designing superamphiphobic layers we are only
aware of few publications.5,15,21,35–37 The aim of this paper is to
help in designing superamphiphobic layers with high apparent
contact angles, which are mechanically stable and show reduced
hydrodynamic drag. Not all of these parameters can be optimized
at the same time and compromises have to be reached. The aim
is also to identify the fundamental, physical limits of super-
amphiphobicity. In order to overcome these limits, new funda-
mental principles of superamphiphobicity have to be invoked.
This journal is ª The Royal Society of Chemistry 2013
Theory
Overview and denitions

On nano- or microstructured superamphiphobic surfaces it is
necessary to distinguish between intrinsic (microscopic)
contact angles of the material and macroscopic, apparent
contact angles of the structured surface. We term the contact
angle measured on a homogeneous planar surface of a certain
material, the material contact angle Q. This is the contact angle
formed by the liquid when extrapolating the liquid shape on the
10 nm to 1 mm scale to the interface. We neglect the effect of
interfacial forces, which may inuence the shape of the liquid
interface on the 10 nm scale close to the contact line.38 On an
ideal smooth surface the material contact angle would be
described by the Young’s relation. It is well known that on real
surfaces the contact angle for an advancing liquid is larger than
the one for a receding liquid, also if the surfaces are smooth,
and chemically homogeneous, etc. Therefore we distinguish,
even on the microscopic length scale, between advancing Qa

and receding material contact angles Qr.
The macroscopic scale in this manuscript is the length scale

observed by eye or with a low-resolution microscope. It is much
larger than the nano- and microstructures forming the super-
amphiphobic layer, thus typically larger than 10 mm. On the
macroscopic length scale we discriminate between apparent
advancing and apparent receding contact angles, denoted by
Qapp

a and Qapp
r , respectively, and related to them the details of

the underlying pattern. We also discriminate between the three
phase contact line (or simply contact line) on the microscopic
and the rim on the macroscopic length scale.

In the following we assume that the pressure difference is
not related to any specic situation and is rather externally
controlled. Note that the theory presented here does not apply
to impalement of evaporating sessile drops with a lateral size on
the order of the lattice spacing. When considering evaporating
drops one should consider that the Laplace pressure in the drop
increases with time.

Let us consider an array of pillars of particles all of equal
radius R arranged in a rectangular lattice of lattice constant a
(Fig. 2). The particles are supposed to be sintered together. The
position of the connecting part is characterized by the angle b.
Each pillar has N particles so that the total height of each pillar
is H0 ¼ (2N � 1)Rcos b, neglecting the cap of the top sphere.
Without any external pressure, the non-polar liquid surface
Soft Matter, 2013, 9, 418–428 | 419
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Fig. 3 Schematic of the top of a pillar with the liquid interface.
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would form a perfectly planar interface at a height H ¼ (2N � 1)
Rcos b � Rcos Q.

The impalement pressure for spaced pillars

There are two possible mechanisms leading to the Cassie-to-
Wenzel transition induced by an applied pressure. First,
the curvature of the liquid interface could reach a value set by
the geometry of the pattern such that the liquid touches the
substrate (sag impalement).26,39,40 Second, the liquid–air inter-
face could depin from the top sphere and move downwards
(depinning impalement).5,8,34

SAG IMPALEMENT. If the pillars are high (H. a=
ffiffiffi
2

p
) the sag

pressure is related to the maximum pressure allowed by the
geometry of the system. For a square lattice the largest possible
value of the mean curvature must be related to the diagonal

distance of the pillars, being roughly a
ffiffiffi
2

p
in case R � a.

Assuming that the prole of the liquid surface can be approxi-
mated by circular arcs, the largest possible curvature is attained
for a semicircle centered at the top level of the pillars. With the
Laplace equation relating the mean curvature to the pressure
difference P between liquid and vapor phases and the interfacial
tension g, we arrive at a maximum pressure:

P ¼ 4ffiffiffi
2

p g

a
(2)

In the case of low pillars H\a=
ffiffiffi
2

p
the liquid interface can

touch the bottom of the substrate, which effectively lowers the
limiting pressure to:

P ¼ 8gH

a2 þ 2H2
(3)

IMPALEMENT DUE TO DEPINNING. We compute the maximum
pressure difference that the interface in an array of pillars can
sustain without going to the Wenzel state. Therefore, rst the
maximum force on a single pillar is calculated. Then we esti-
mate the maximum pressure from this force and the area of a
unit cell. On each pillar the liquid interface exerts a capillary
force given by the line integral of the vertical component of the
tension of the liquid–vapor interface along the contact line. This
force has also been calculated in the context of the particle–
bubble interaction in otation and sphere tensiometry.41–43 In
the case of large pillar spacing (R � a) we can assume the
liquid–air interface having rotational symmetry, and the capil-
lary force is given by44

Fc ¼ 2pgRsin asin(Qa � a) (4)

here a is the angle describing the position of the contact line on
the particle surface (Fig. 3). We employ the material advancing
contact angle Qa since the liquid is advancing on the surface of
the pillar.

When a ¼ Qa/2 the force in eqn (4) is maximum and is
expressed by41–43

Fc ¼ 2pgRsin2 Qa

2
(5)

In mechanical equilibrium the capillary force has to be equal
to the pressure P multiplied by the area A of the liquid–air
420 | Soft Matter, 2013, 9, 418–428
interface per pillar projected into the plane of the substrate:
Fc¼ PA. In the limit of large pillar spacing, R� a, we can replace
A by the total area A0 per pillar. In this approximation the
pressure and the capillary force reach their maximum simul-
taneously. The depinning impalement pressure is

P ¼ 2pgR

A0

sin2 Qa

2
(6)

For the unit cell of a square lattice, we have A0 ¼ a2. For a

hexagonal arrangement of pillars the area is A0 ¼ a2
ffiffiffi
3

p
=2. Eqn

(5) and (6) are only valid if the liquid surface does not touch the
second sphere from the top. As long as b < Qa/2 this is most
likely the case, even though for non-polar liquids the contact
angle is below 90�. For b > Qa/2 we have to derive the depinning
pressure directly from eqn (4) with a ¼ b.

In Fig. 4A the impalement pressure calculated with eqn (6) is
compared to the one calculated with eqn (2) and (3); we chose
g¼ 0.04 Nm�1 andQa¼ 70� as typical parameters. Calculations
were carried out for R ¼ 50 nm, 0.5 mm and 5 mm. Results can
accordingly be only shown for a > 100 nm, 1 mm and 10 mm,
respectively. The depinning impalement pressure is lower than
the impalement pressure due to sagging for high pillars calcu-
lated with eqn (2). It scales with a�2 rather than a�1. As a
consequence depinning rather than sagging limits the perfor-
mance. This is further demonstrated by calculating the sagging
impalement pressure for pillars of only two spheres taking H ¼
R[3cos b � cos(Qa/2)] (dotted lines; eqn (3)). In each curve two
regimes with different scaling are obtained. For low spacing the
impalement pressure decreases with a�1 as for high pillars. For
large spacing the decrease is proportional to a�2. Even for the
case of only two spheres in one pillar, depinning occurs at a
lower pressure than sagging. Practically, reducing the pillar
height to only two spheres may, however, not be robust enough.
Even a slight ow or a so impact may cause a Cassie-to-Wenzel
transition.

Impalement pressure for close pillars

If the density of pillars is high and 2R � a is not fullled, one
has to account for two effects. First, the true projected area of
the liquid–air interface has to be employed, i.e., the area of the
unit cell corrected by the area enclosed by the projected contour
of the contact line. Second, the three dimensional contour of
the three phase contact line on a pillar becomes more and more
distorted and non-circular as a / 2R. Hence, the simple
geometric model does not hold anymore. The expression
accounting for the rst effect is:
This journal is ª The Royal Society of Chemistry 2013
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Fig. 4 (A) Impalement pressure versus spacing a between pillars calculated with
eqn (2) for sagging (dashed line) with high pillars, sagging for pillars with only
two spheres calculated with eqn (3) (dotted lines), and for depinning (continuous
lines) calculated with eqn (6) for different particle sizes. (B) Apparent receding
contact angle calculated with eqn (11). (C) Slip length versus spacing calculated
with eqn (30) using f ¼ 0.5. Parameters: R ¼ 50 nm, 0.5 mm, and 5 mm, g ¼ 0.04 N
m�1, Qa ¼ 70� , b ¼ 30� .

Fig. 5 Normalized impalement pressure due to interfacial depinning from pillars
versus separation s¼ a� 2R divided by the radius R forQa¼ 70� and 120� and g¼
0.04 Nm�1. Solid lines display the maximum pressure according to eqn (7) and (8)
(black) and the maximum pressure in eqn (6) (blue). Symbols indicate the data
obtained from numerical minimizations of the interfacial energy for the square
(red squares) and hexagonal (green hexagons) geometry. The insets show the
normalized depinning pressure versus the normalized size. The normalized size isffiffiffiffiffi
A0

p
=R, where A0 the area of the unit cell containing a single pillar.

Paper Soft Matter

D
ow

nl
oa

de
d 

by
 E

co
le

 S
up

 d
e 

Ph
ys

iq
ue

 e
t d

e 
C

hi
m

ie
 I

nd
us

tr
ie

 o
n 

08
 J

an
ua

ry
 2

01
3

Pu
bl

is
he

d 
on

 2
3 

O
ct

ob
er

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2S
M

27
01

6A
View Article Online
P ¼ 2pgRsin asinðQa � aÞ
A0 � pR2 sin2

a
(7)

The pressure maximum is shied to larger values a > Qa/2 of
the opening angle as the effective area becomes smaller when
the contact line moves down the pillar. The opening angle for
maximum pressure (dP/da ¼ 0) is given by

sin a ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 � R2sin2

Qa � 2acos Qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � R2sin2

Qa

p
ðR2 � 2a2Þ2þR2ð4a2 � R2Þcos Qa

vuut (8)

The value of the pressure at its maximum is larger than the
impalement pressure predicted by eqn (6) (Fig. 5). It can be
calculated by inserting a obtained from eqn (8) into (7).

To determine the maximum pressure for close arrangements
of pillars, we performed numerical minimizations of the inter-
facial energy. Here, we used the freely available soware surface
evolver.45 Regular square and hexagonal lattices of pillars were
considered. For both geometries we impose the condition that
the liquid–air interface is horizontal on the boundaries of the
This journal is ª The Royal Society of Chemistry 2013
domains while the interface can move freely up and down on
the sidewalls. This boundary condition is a direct consequence
of the reection symmetry of the liquid–air interface on the
boundary of the unit cell.

Results are summarized in Fig. 5 for material contact angles
of Qa ¼ 70� and Qa ¼ 120�. The normalized pressure is plotted
versus the normalized spacing. The normalized spacing isffiffiffiffiffi
A0

p
=R, where A0 is the area of the unit cell containing a single

pillar. Thus for a square lattice the normalized spacing is a/R
and for the hexagonal lattice it is 3�1/4a/R. A comparison of the
model calculations shows that as expected the impalement
pressure derived by maximizing the force (eqn (6)) and the
effective pressure (eqn (7) and (8)) is asymptotically identical for
a/2R/N. In the opposite limit, for a/2R/ 1 andQa¼ 70�, the
approximation (6) underestimates the impalement pressure by
a factor of up to two smaller than the maximum of expression
(7). For Qa ¼ 120� eqn (7) diverges in the limit a/2R / 1 due to
the unphysical toroidal ring induced by the rotational
symmetry. The snapshots of the liquid morphologies for small
spacings close to the maximum pressure included in Fig. 5 help
to clarify the situation: while for Qa ¼ 70� the corrugation of the
contact line is smooth, for Qa ¼ 120� the contact line present
large oscillations along the directions of the other spheres.

The numerical results for the square and hexagonal packing
scale with a�2. In the limit a/2R / 1, they approach interme-
diate values between the maximum force and the maximum
pressure criteria. These values are in good agreement with the
imbibition and drainage pressure obtained for close spacing of
Soft Matter, 2013, 9, 418–428 | 421
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spheres with the same geometries.46,47 As shown in Fig. 5, the
numerically obtained data for the square and hexagonal lattices
and the analytical results for maximum pressure according to
eqn (7) and (8) collapse onto the same master curve. Only in the
case of a large material contact angle Qa ¼ 120�, we nd a
noticeable deviation which is due to the formation of pendular
bridges between the points of close contact. The maximum
pressure according to the maximum force criterion in eqn (6),
however, systematically underestimates the maximum pressure
and approaches the numeric results only asymptotically for
large separations.
Material and apparent contact angles

To relate the two contact angles we consider the situation at the
rim of a drop (Fig. 6). The drop is supposed to be large enough
so that the distance between pillars is much smaller than the
radius of the drop. The topmost sphere at the rim just before the
rim detaches experiences a force in the direction of the move-
ment of the rim of

Fr ¼ 2pgRsin2

�
p�Qr

2

�
¼ 2pgRcos2

Qr

2
(9)

This equation is fundamentally the same as eqn (5), we only
replaced the contact angle by p–Qr because the liquid is pulled
away from the sphere. The outward force caused by the Laplace
pressure can usually be neglected. Fr is acting in a direction
Qapp

r /2 with respect to the horizon (Fig. 6). The horizontal
inward component of this force is

Fh ¼ 2pgRcos2
Qr

2
cos

Qapp
r

2
(10)

When the rim recedes the liquid detaches from the topmost
sphere of the pillar and is then pinned at the top sphere of the
next pillar to the right. Just before the liquid recedes macro-
scopically this horizontal component is balanced by the surface
tensional force per unit length g(1 + cosQapp

r ). If we equate both
for a line parallel to the rows of pillars we get

Qapp
r ¼ 2$arccos

�
pR

a
cos2

Qr

2

�
(11)

We used the mathematical identity (1 + cos x)/cos(x/2) ¼
2cos(x/2). If the argument is much smaller than unity (R/a� 1),
the arccos can be written in a series: arccos (x) ¼ p/2 � x � .
leading to
Fig. 6 Schematic of the left rim of a receding liquid drop on a superamphiphobic
layer.

422 | Soft Matter, 2013, 9, 418–428
Qapp
r ¼ p

�
1� 2R

a
cos2

Qr

2

�
(12)

Eqn (11) and (12) allow us to relate the materials contact
angle to the apparent contact angle for a liquid surface with a
rim moving perpendicular to rows of pillars, i.e. in the (1,0) or
(0,1) direction.

We can draw several conclusions:
� With respect to the shape of the superamphiphobic layer

the apparent receding contact angle only depends on the ratio
a/R. For a givenQr, the ratio a/R should be as high as possible to
achieve a high apparent receding contact angle (Fig. 4B).

� The apparent contact angle increases with the material
contact angle (Fig. 7). The dependence of Qapp

r on Qr is,
however, weak. The higher the ratio a/R the weaker the depen-
dence of Qapp

r on Qr.
� The surface tension g does not directly appear in eqn (11).

The surface tension enters indirectly via the material contact
angle and Young’s equation.

On two-dimensional arrays of pillars the apparent contact
angles depend on the direction. The larger the spacing in a
given direction the higher the apparent receding contact angles.
For example, if we consider the rim moving in the (1,1) direc-
tion, that is 45� with respect to rows of pillars, the spacing
between rows is a

ffiffiffi
2

p
and eqn (11) becomes

Qapp
r ¼ 2$arccos

�
pR

a
ffiffiffi
2

p cos2
Qr

2

�
(13)

For comparison we also applied the Cassie–Baxter equation
(eqn (1)) to relate the materials contact angle to the apparent
contact angle (Fig. 7). From the geometry the projected area of
the liquid–solid interface is given by 4s ¼ pR2sin2 Qr/a

2 and the
curvature correction by r ¼ 2(1 + cos Qr)/sin

2 Qr. Combining in
eqn (1) and rearranging we obtain

cos Qapp
r ¼ pR2

a2
ð1þ cos QrÞ2�1 (14)

The Cassie–Baxter equation leads to signicantly higher
apparent contact angles than those obtained with eqn (11). The
Fig. 7 Apparent receding contact angle versus the material receding contact
angle for a/R ¼ 5, 10, and 20 from bottom to top. Qapp

r was calculated with eqn
(11) (continuous lines). For comparison, the apparent contact angle was also
calculated with the Cassie–Baxter equation (eqn (14)) (dashed lines).

This journal is ª The Royal Society of Chemistry 2013

http://dx.doi.org/10.1039/c2sm27016a


p

Paper Soft Matter

D
ow

nl
oa

de
d 

by
 E

co
le

 S
up

 d
e 

Ph
ys

iq
ue

 e
t d

e 
C

hi
m

ie
 I

nd
us

tr
ie

 o
n 

08
 J

an
ua

ry
 2

01
3

Pu
bl

is
he

d 
on

 2
3 

O
ct

ob
er

 2
01

2 
on

 h
ttp

://
pu

bs
.r

sc
.o

rg
 | 

do
i:1

0.
10

39
/C

2S
M

27
01

6A
View Article Online
relevant factor scales with the respective area covered by pillars,
R2/a2, rather than R/a. The Cassie–Baxter equation is not
applicable because any shi of the rim is discontinuous and
determined by horizontal depinning.32,48,49

The advancing contact angle is solely given by geometry. For
the liquid surface to advance it has to touch the top of the next
neighboring pillar. As soon as it gets into contact with the next
pillar, it is going to wet the top sphere. If all pillars have
perfectly the same height and spacing, this happens when Qap

a

reaches a critical value given by (Fig. 8)

Rð1þ cos QaÞ
a

¼ tanðp�Qapp
a Þ0

Qapp
a ¼ p� arctan

�
R

a
ð1þ cos QaÞ

� (15)

Eqn (15) was derived on purely geometric grounds. Most
likely, the contact is established signicantly before. Thermal
uctuations, external mechanical noise, inhomogeneous height
and position distributions of pillars will cause the liquid to get
into contact with the neighboring pillar before. In particular
when the drop is placed on the superamphiphobic surface or
when one starts to tilt the plate, mechanical vibrations can
easily cause the drop to uctuate. Therefore, eqn (15) gives a
higher limit. Practically, always the receding contact angle will
dominate superamphiphobicity because the relevant question
is to which degree does the drop detach aer placing it on a
surface and disturbing it mechanically.

Mechanical damage

We rst consider the mechanical resistance of pillars consti-
tuted of silica glass to vertical stress. The critical vertical stress
svp inducing plastic yield of the pillars can be estimated as:

svp ¼ syprp
2

a2
(16)

here sy is the yield strength of the material constituting the
pillar and rp is the radius of the pillar. To estimate the radius rp
we treat the pillar as a circular beam with a radius rp ¼ Rsin b.
The constitutive relation for plastic yielding in silica glass has
recently been investigated by Lacroix et al.50 on micron sized
silica pillars. It provides an estimate of the yield strength under
uniaxial compression of sy ¼ 6.5 GPa. For example, with a ¼ 1
mm, R ¼ 50 nm, b ¼ 30� we obtain a critical vertical stress of
svp ¼ 13 MPa.

The pillars are exposed to various mechanical stresses.
Vertical stresses on the pillars in the Cassie state are mainly
Fig. 8 Schematic of the advancing side of the rim of a liquid drop on an array of
pillars.

This journal is ª The Royal Society of Chemistry 2013
caused by the pressure in the liquid, as it may be induced from
the weight of a drop. Other sources of vertical stress are the
impact of dust particles, drops, or touching the layer. Pillar
failure originating from vertical compressive stresses can be
due to either plastic yield or buckling. The critical buckling
force for a pillar with one end xed and the other end free to
move laterally is

Fvb ¼ p2EI

4H0
2
¼ p3Erp

4

16H0
2

(17)

here, I ¼ prp
4/4 is the moment of inertia for a cylindrical beam

of radius rp and E is the Young’s modulus. The corresponding
critical vertical stress for buckling is

svb ¼ Fvb

a2
¼ p3Erp

4

16H0
2a2

(18)

For two examples the critical vertical stress versus pillar
spacing is plotted in Fig. 9. The two examples are for H0 ¼ 1 mm
and 350 nm, corresponding to 12 and 4 silica particles of 50 nm
radius and b ¼ 30�, respectively. Buckling occurs at lower
vertical stress than yielding. We conclude that buckling is the
most limiting failure mechanisms under vertical compression.
This should generally be accounted for in the design of the
pillars. However, the critical stress for buckling is higher than
all estimates of the impalement pressure. Thus the hydrostatic
pressure of the liquid is no concern for the present application,
where the liquid should remain in the Cassie state.

Forces in the horizontal direction are more problematic.
They can be caused by the drag of a owing liquid, by horizontal
capillary forces at the rim of a drop, or by the inertia of an
impacting drop. They may also be caused by other sources not
related to the liquid, for example when touching the super-
amphiphobic layer.

When the pillars are equally spaced, the effect of a homo-
geneous, horizontal stress sh applied on the top of the super-
amphiphobic layer results in a force Fh ¼ sha

2 applied on the
top sphere of each pillar. The deection d of an elastic beam
with a circular cross-section of radius rp is related to the hori-
zontal force Fh ¼ sha

2 by
Fig. 9 Critical vertical stress for buckling svb (eqn (18); dashed lines) and critical
value of the horizontal shear stress sh (eqn (22); continuous lines) versus spacing a
for pillars of H0 ¼ 1 mm (black) and 350 nm (red) height. Other parameters were:
R ¼ 50 nm, b ¼ 30� , E ¼ 70 GPa, and sR ¼ 5 GPa.
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d ¼ Fh

EI

H0
3

3
(19)

The local stress condition in an elongated beam under
exion is essentially uniaxial. The maximum local tensile stress
smax occurs at the external surface of the beam and close to the
xed basement. Its value is given by

smax ¼ FhH0rp

I
(20)

When expressed in terms of the homogeneous, horizontal
shear stress sh this becomes:

smax ¼ 4

p

sha
2H0

R3sin3
b

(21)

If the maximal stress exceeds the rupture strength, sR, the
pillar breaks. The critical value of the horizontal shear stress sh
is thus:

sh ¼ pR3sin3
b

4H0a2
sR (22)

From the mechanical point of view the pillars should thus be
made of large spheres with a large neck size (high b). The pillars
should be short and densely spaced. The rupture strength of the
material should be as high as possible.

Estimating the maximal rupture strength sR depends on the
particular material and on the failure mechanism, which may
signicantly be affected by the size of the considered object.
According to Griffith’s observations51 the strength of oxide
glasses at the macroscopic scale is strongly limited by the typical
size c of defects, represented by everpresent microscale fractures
originated during manufacture and handling. The failure mode
is essentially given by the brittle fracture propagation originating
from the largest defect in the stressed region. The rupture
strength is related to the theoretical limiting fracture strength
sth by sRz2sth

ffiffiffiffiffiffiffi
c=r

p
. Here, r is the curvature radius at the end of

a microcrack. It is of molecular dimensions in glasses and the
theoretical limiting strength is estimated to be sth z 14 GPa for
silica glass.52 Although the typical strength of window glass is
only around 90 MPa, due to micron size defects, the strength of
optical bers of micron scale diameter bearing only nanoscale
defects can reach 10 GPa in a vacuum and 5 GPa in the current
atmosphere.52 Recent measurements on silica nanowires
conrm a further increase of strength beyond 10 GPa (ref. 53)
just aer formulation. For such small objects, the bearable
defect size becomes of molecular order, and the fracture
strength becomes so strong that it is close to the plastic yield
strength. However, the manifestation of plastic phenomena is
likely to be limited to typical scales smaller than 10 nm.53,54

With these considerations we estimate the maximal rupture
strength to be of the order sRz 5 GPa for our application due to
the nanoscale of the pillar structures and the lack of protection
from the atmosphere. For H0 ¼ 1 mm and 350 nm the critical
horizontal shear stress is plotted versus the spacing in Fig. 9.
The pillars withstand vertical stress better than shear. In the
absence of any protection from the atmosphere, the long term
shear resistance of the superamphiphobic layer is likely to be
reduced by stress–corrosion phenomena.55 Due to the cubic
424 | Soft Matter, 2013, 9, 418–428
(eqn (22)) or even R4 (eqn (18)) dependence, increasing the
particle size would drastically increase the mechanical stability.

We compare the critical horizontal stress to the horizontal
capillary force acting at the rim of a drop. For a pillar to be
stable the horizontal force given in eqn (10) needs to be lower
than the value calculated by eqn (22):

Fh ¼ 2pgRcos2
Qr

2
cos

Qapp
r

2
\

psRR
3sin3

b

4H0

(23)

An upper limit of the le hand side is 2pgR leading to the
stability criterion

g

sR

\
R2sin3

b

8H0

(24)

The le hand side is of the order of g/sR z 10�11 m. With
H0 ¼ 1 mm, R ¼ 50 nm, and b ¼ 30� the right hand side is 4 �
10�11 m. The pillars should easily withstand the horizontal
component of the surface tension.

Pillars at the rim of a drop are also subject to a vertical
traction force, which is of the same order of magnitude as the
horizontal component. Such force is thus comfortably smaller
than the resistance of nanoscale silica pillars to uniaxial trac-
tion, which is comparable to the prediction of eqn (16) since
sR z 5 GPa is close to sy ¼ 6.5 GPa at the nanoscale.
Hydrodynamic drag

One potential application of superamphiphobic layers is in drag
reduction. For superhydrophobic surfaces an effective slip has
been calculated by partitioning the surface into regions of no-
slip (solid–liquid interfaces) and no shear (the liquid–air
interfaces).56–60 In all cases the surfaces were assumed to be
smooth and planar. For superamphiphobic layers we need to
take hydrodynamic drag due to the overhanging topography
into account.

As an example we consider the pressure-driven ow of a pure
liquid in a cylindrical capillary of radius rc and length Dx
(Fig. 10). The capillary is coated at the inside with a super-
amphiphobic layer. We assume that the radius of the capillary is
large compared to all dimensions describing the super-
amphiphobic layer (a � rc, H0 � rc). Again we distinguish
between the microscopic and macroscopic length scale. On the
microscopic length scale the liquid in contact with the top of the
pillar is assumed to follow the no-slip boundary condition. The
velocity of the liquid parallel to the surface at zero distance is
assumed to be zero. In between the pillars we assume that the
liquid–vapor interface is not able to hold any shear (perfect
slip). Macroscopically, that is on a length scale much larger than
the pillar size and spacing, this leads to an effective slip length.

In the steady state the force caused by the applied pressure to
the liquid in the capillary is prc

2DP. It is balanced by the
hydrodynamic drag force 2prcshDx. Equating both leads to

sh ¼ rc

2

DP

Dx
(25)

here sh is the horizontal shear stress caused by the viscous drag
of the liquid on the stationary topmost particles.
This journal is ª The Royal Society of Chemistry 2013
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Fig. 10 Schematic of a capillary with liquid flowing from the left to the right
(top). The pressure at the inlet, Pin, is higher than that at the outlet, Pout, with DP¼
Pin � Pout. Bottom: cross-section along the capillary and the flow profile. Inside
that capillary is coated with a superamphiphobic layer.
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To relate the shear to microscopic parameters we assume
that the drag force on the top sphere can be described by a
modied Stokes friction:

Fd ¼ 6phRvsf (26)

here h is the viscosity of the liquid and vs is the apparent,
macroscopic slip velocity. The correction factor f is between 0.5
and 1.61 For a half immersed sphere f ¼ 0.5 (ref. 62), and for a
fully immersed sphere f ¼ 1. The transition between half and
full immersed is not easy to describe and to our knowledge only
numerical solutions have been reported.63,64 That eqn (26) is a
good approximation for the laminar ow of spheres attached to
a uid interface is supported by theory62–65 and veried by drag
and diffusion experiments on single macro-,61,62,66 micro-67,68

and nanospheres69 at liquid–uid interfaces.
From eqn (26) the shear stress is

sh ¼ 6phRf

A0

vs (27)

Combining eqn (25) and (27) allows us to calculate the slip
velocity as a function of the applied pressure gradient, sphere
radius, and distance between pillars:

vs ¼ 1

12ph f

rcA0

R

DP

Dx
(28)

The ow prole for the pressure-driven ow is parabolic

v ¼ vs þ
�
rc

2 � r2
�

4h

DP

Dx
(29)
This journal is ª The Royal Society of Chemistry 2013
where r is the radial coordinate. The effective slip length b can
be calculated by extrapolating the velocity gradient |dv/dr| at r
/ rc:

b ¼ vs

jdv=drðrcÞj ¼
2hvs

rc

1

DP=Dx
¼ 1

6pf

A0

R
(30)

The slip length is dened as the distance beyond the solid–
liquid interface at which the liquid velocity extrapolates to zero.
To be precise, the solid–liquid interface in the Cassie state is just
below the top sphere of the pillars. The effective slip length scales
with a2/R (Fig. 4C) since A0 f a2, which agrees with eqn (14) in
ref. 70. It does not depend on the viscosity or the capillary radius.

The reduced drag at the wall of the capillary leads to an
increased ow of71

dV

dt
¼ prc

4

8h

DP

Dx
þ vsprc

2 ¼ prc
4

8h

DP

Dx

�
1þ 4b

rc

�
(31)

The rst term is the Hagen–Poiseuille ow, the second adds
a plug ow with velocity vs. The relative ow enhancement is
proportional to the slip length divided by the radius of the
capillary. In order to reduce drag a2/R should be as large as
possible.

The ow through a capillary is proportional to the applied
pressure DP. If Pin exceeds the impalement pressure the liquid
will invade the superamphiphobic layer. Once it locally passed
from the Cassie to the Wenzel state, the transition will propa-
gate through the whole capillary,72 unless prevented by addi-
tional barriers. Therefore, impalement has to be prevented.
Optimizing capillaries with respect to the pressure-driven ow
is a compromise between increasing slip and allowing for a high
impalement pressure. Increasing slip would demand a high
value of a2/R. Preventing impalement would require just the
opposite. If we take into account the maximal applicable pres-
sure as given by eqn (6) we get for the maximum ow before
impalement:

dV

dt
¼ prc

3

8h

2pg

Dx
sin2 Qa

2

�
rcR

a2
þ 2

3pf

�
(32)

The rst term in brackets accounts for conventional Hagen–
Poiseuille ow while the second is the enhancement due to slip.
Slip only facilitates ow signicantly if

rcR

A0

\
2

3pf
z 0:4 (33)

Thus for thin capillaries such as in microuidic applications
slip due to superamphiphobicity may become important. It is,
however, unlikely that mass transport of liquids through thick
pipes will be signicantly affected.

To demonstrate this effect we calculated the pressure-driven
ow through a capillary of 10 cm length which is coated at the
inside with an array of pillars of spheres of R ¼ 0.5 mm (Fig. 11).
Two pillar spacings, a, were considered: 5 mm and 10 mm. With
a ¼ 10 mm the slip length is b ¼ 21 mm and the impalement
pressure is P¼ 413 Pa; g¼ 0.04 Nm�1,Q¼ 70� and f¼ 0.5 were
chosen as typical parameters. For a ¼ 5 mm the corresponding
values are b ¼ 5.3 mm and P ¼ 1650 Pa. When applying a
pressure to a microcapillary with a relatively small radius of rc ¼
Soft Matter, 2013, 9, 418–428 | 425
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Fig. 11 Flow through a cylindrical capillary calculated with eqn (32) versus
applied pressure for a radius rc ¼ 50 mm (top) and 0.5 mm (bottom). Dx ¼ 10 cm,
R ¼ 0.5 mm, a ¼ 5 (black) and 10 mm (red). Other parameters: g ¼ 0.04 N m�1,
Qa ¼ 70� , h ¼ 0.001 Pa s, f ¼ 0.5. Discontinuities mark the Cassie-to-Wenzel
transition.
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50 mm (Fig. 11, top), the ow increases linearly (eqn (31)). For
the capillary with a ¼ 10 mm the slope of this increase is higher
because of the higher slip length. Once the impalement pres-
sure of 413 Pa has been reached, the liquid passes the Cassie-to-
Wenzel transition. The slip length is strongly reduced and
practically goes to zero. Flow is described by the well-known law
of Hagen–Poiseuille. For the narrower spacing (a ¼ 5 mm) the
Cassie-to-Wenzel transition is shied to a higher impalement
pressure. For a capillary of 0.5 mm radius (Fig. 11, bottom)
qualitatively the same dependencies are obtained. Flow
enhancement is, however, relatively low for both values of a.

The largest shear stress induced by hydrodynamic drag on
the superamphiphobic layer in the considered examples is
obtained for the larger capillary tube (rc ¼ 0.05 mm) and the
smallest spacing a between pillars (a ¼ 5 mm). Considering a
pressure drop corresponding to the impalement pressure P ¼
1650 Pa over the tube length of 10 cm, the shear stress can be
estimated to be 4 Pa from eqn (25). It is not a concern for the
mechanical stability of the pillars.

In this context we would like to mention a related effect
which reduces effective slip length. It is well established that
surface active molecules adsorbed at the liquid–vapor interface
change the full-slip to a no-slip boundary condition due to the
Marangoni effect.73–81 The surface active molecules can be
deliberately added surfactants, but also contaminations. The
owing liquid creates concentration gradients in the adsorbed
species. The resulting Marangoni effect counteracts the pres-
sure driven ow. Marangoni effects73 also delay the rise of
bubbles in surfactant solutions,74–77 stabilizes foam lms78–80 or
426 | Soft Matter, 2013, 9, 418–428
enhances repulsive hydrodynamic force between uid inter-
faces.82 They are active even at very low concentrations. In our
case, the Marangoni effect would delay the ow of liquid
between the pillars.
Conclusions

Arrays of vertical pillars of spheres, which are partially sintered
together, can form apparent contact angles Qapp above 150�

even though the material’s contact angle Q is below 90�. Qapp

above 150� is obtained by pinning of the liquid surface at the
underside of the top sphere resulting in a Cassie state. The
impalement pressure determined by depinning is given by eqn
(6) and increases with R/a2.

By balancing forces at the rim of a drop, the material’s
contact angle could be related to the apparent contact angle. For
a given material’s contact angle the apparent receding contact
angle is given by eqn (11) or (12). Qapp

r increases with increasing
a/R. The apparent contact angle depends on the direction of
wetting or dewetting because for two-dimensional crystalline
arrays the effective spacing between rows of pillars depends on
the direction.

The superamphiphobic layers reduce drag and enhance the
ow as long as the liquid remains in the Cassie state. To
describe drag reduction we calculate the apparent slip length to
be za2/(3pR) (eqn (30)). Drag reduction is, however, only
effective in microscopic channels.

For all applications where the use of superamphiphobic
surfaces is limited to the Cassie state, silica glass pillars would
be able to sustain the normal and shear stresses caused by
capillary and drag forces. To increase the stability of super-
amphiphobic surfaces with respect to shear, R3/a2 should be as
high as possible.
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